融合图像分离和特征分析的烟雾检测算法研究
本文选题:视频烟雾检测 + 前景分割 ; 参考:《太原理工大学》2017年硕士论文
【摘要】:火灾是一种突发性高、破坏力强的自然灾害,生产生活中用火不慎也会对人的生命财产安全造成严重威胁。火灾初期烟雾先于火焰出现,烟雾探测能够为人员疏散和扑救火灾争取更多宝贵的时间。因此,火灾烟雾探测已成为当今社会迫切需要解决的课题。目前,视频烟雾检测因其高效性、非接触性、可嵌入性等优点而成为新的研究方向。为了提升烟雾视频检测系统的高效性和可靠性,论文围绕烟雾视频检测技术的三个阶段——前景目标检测阶段、烟雾特征提取阶段、烟雾识别阶段进行研究,提出了融合图像分离和特征分析的烟雾检测算法。(1)前景目标检测:针对前景目标检测,提出了基于ICA和GBVS的烟雾图像分离检测算法,改善了传统高斯混合模型所需样本量大且采样时间跨度长这一问题。该算法在烟雾分离阶段先利用ICA烟雾前景初步分离烟雾模型得到初步烟雾前景,然后通过GBVS提取图像多通道、多尺度的底层特征得到烟雾前景显著区域,最后根据颜色和纹理的特征组合进行直方图匹配来识别烟雾。实验结果表明,该算法在烟雾前景分离阶段将ICA和GBVS相结合,有效缩减了烟雾前景区域的范围,提取的烟雾区域小而集中,ROC曲线显示该算法整体性能表现优秀。(2)烟雾特征提取:针对烟雾特征提取,提出了基于多维纹理分析的烟雾特征提取检测算法。传统烟雾视频的线性动态系统(LDS)仅采用亮度值作为图像信息,忽视了其他信息如彩色视频的RGB信息,并且由于密集采样导致计算量较大。该算法首先经过烟雾颜色过滤和背景差分预处理得到烟雾候选区域,避免出现密集采样,降低了计算量;然后在多维图像块中新增RGB和HOG特征,增加了图像块的维度;最后基于对多维图像数据的高阶分解,分析烟雾视频的动态纹理特征。由于采用滑动时间窗,可以确定画面中烟雾的确切位置和烟雾发生的具体时间。实验以检测率为评价指标,采用多元比较的方法,结果表明,该算法提高了动态纹理特征分析的可靠性,同时计算量较小。(3)烟雾识别:针对烟雾识别,提出了基于广义熵模糊神经网络的烟雾视频图像聚类检测算法。该算法首先利用基于ICA和GBVS的烟雾图像分离算法得到烟雾前景,然后提取基于高阶线性动态系统(h-LDS)的多维动态纹理特征,最后利用一种广义熵模糊神经网络对特征进行训练和分类。实验结果表明,基于广义熵模糊神经网络的烟雾视频图像聚类算法有较高的聚类正确率,且训练误差较小。
[Abstract]:Fire is a kind of natural disaster with high burst and strong destructive power. The careless use of fire in production and life will also pose a serious threat to the safety of human life and property. Smoke appears before flame in the early stage of fire, and smoke detection can buy more valuable time for evacuation and fire fighting. Therefore, fire smoke detection has become an urgent problem to be solved in today's society. At present, video smoke detection has become a new research direction because of its high efficiency, non-contact, embeddability and other advantages. In order to improve the efficiency and reliability of smoke video detection system, this paper focuses on three stages of smoke video detection technology: foreground target detection stage, smoke feature extraction stage, smoke recognition stage. A smoke detection algorithm based on ICA and GBVS is proposed. (1) foreground target detection: aiming at foreground target detection, a smoke image separation detection algorithm based on ICA and GBVS is proposed. The problem of large sample size and long sampling time span for traditional Gao Si hybrid model is improved. At the stage of smoke separation, the ICA smoke foreground model is used to obtain the initial smoke foreground, and then GBVS is used to extract the multi-channel image, and the multi-scale bottom feature is used to obtain the significant region of smoke foreground. Finally, the smoke is identified by histogram matching according to the combination of color and texture. The experimental results show that the ICA and GBVS are combined in the stage of smoke foreground separation, and the range of smoke foreground region is reduced effectively. The extracted smoke region is small and concentrated ROC curve shows that the whole performance of the algorithm is excellent. (2) smoke feature extraction: for smoke feature extraction, a multi-dimensional texture analysis based smoke feature extraction detection algorithm is proposed. The traditional linear dynamic system of smoke video (LDS) only uses luminance value as image information, neglecting other information such as RGB information of color video, and because of dense sampling, the computation is large. Firstly, smoke candidate regions are obtained by smoke color filtering and background differential preprocessing to avoid dense sampling and reduce computational complexity, then RGB and HOG features are added to multi-dimensional image blocks, and the dimension of image blocks is increased. Finally, based on the higher order decomposition of multidimensional image data, the dynamic texture features of smoke video are analyzed. Because of the sliding time window, the exact location and time of smoke in the screen can be determined. The experiment takes the detection rate as the evaluation index and adopts the method of multivariate comparison. The results show that the algorithm improves the reliability of the dynamic texture feature analysis, and the computation is small. (3) smoke recognition: for smoke recognition, A clustering detection algorithm for smoke video images based on generalized entropy fuzzy neural network is proposed. Firstly, the smoke image separation algorithm based on ICA and GBVS is used to obtain the foreground of smoke, and then the multi-dimensional dynamic texture feature based on high-order linear dynamic system (h-LDS) is extracted. Finally, a generalized entropy fuzzy neural network is used to train and classify the features. The experimental results show that the clustering algorithm based on generalized entropy fuzzy neural network has higher clustering accuracy and less training error.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 张炜程;李佩;高陈强;;森林背景下基于自适应区域生长法的烟雾检测[J];重庆邮电大学学报(自然科学版);2016年01期
2 贾阳;林高华;王进军;方俊;张永明;;基于显著性检测和高斯混合模型的早期视频烟雾分割算法[J];计算机工程;2016年02期
3 史玉坤;仲贞;张德馨;杨金锋;;利用多特征判别的烟雾检测方法研究[J];信号处理;2015年10期
4 董兰芳;余家奎;;基于图像分离的视频烟雾检测方法[J];计算机工程;2015年09期
5 方帅;祁林娟;于磊;;多特征分析的视频烟雾检测方法[J];计算机工程与应用;2016年13期
6 潘广贞;元琴;樊彩霞;乔慧芬;王志豪;;基于混合高斯模型和帧差法的吸烟检测算法[J];计算机工程与设计;2015年05期
7 钱生;陈宗海;林名强;张陈斌;;基于条件随机场和图像分割的显著性检测[J];自动化学报;2015年04期
8 李敏;刘轲;罗惠琼;王添杨;赵麒;;基于混合高斯模型的异常检测算法改进[J];计算机应用与软件;2014年06期
9 张燕君;邵明亮;;基于小波纹理特性分析的视频烟雾检测算法研究[J];光学技术;2013年04期
10 王涛;刘渊;谢振平;;基于自适应神经模糊推理系统的视频烟雾检测[J];计算机工程;2011年23期
相关博士学位论文 前2条
1 康锋;基于视觉特征的早期农林火灾检测方法的基础研究[D];浙江大学;2010年
2 王勇;基于统计方法的运动目标检测与跟踪技术研究[D];华中科技大学;2009年
相关硕士学位论文 前7条
1 梁何;视觉显著性在视频目标识别中的应用研究[D];南京邮电大学;2016年
2 胡传秀;基于融合特征的火焰和烟雾识别方法研究[D];华东交通大学;2016年
3 冯海永;基于超像素的显著性区域检测研究[D];江南大学;2016年
4 岳姣姣;基于多特征融合的林火烟雾检测算法研究[D];燕山大学;2016年
5 邓林;视频烟雾检测算法研究[D];电子科技大学;2015年
6 李智明;基于改进FastICA算法的混合语音盲分离[D];上海交通大学;2015年
7 游勇;基于视频动态特征分析的烟雾检测算法研究[D];西南交通大学;2013年
,本文编号:2113669
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2113669.html