基于UWB技术的TDOA定位算法的研究与实现
[Abstract]:With the development of information technology, people depend more and more on spatial location information. For example, ultrasonic positioning technology RFID (Radio Frequency Identification) positioning technology Bluetooth positioning technology WiFi positioning technology ZigBee positioning technology and ultra-wideband positioning technology and so on. As a result, there are many algorithms, such as TDOA and TDOA, and so on. The introduction of these localization techniques and their advantages and disadvantages are briefly introduced in the second chapter of this paper, and the above algorithms are also introduced and compared in the third chapter of this paper, so they are not introduced one by one. Therefore, the rapid development of positioning technology also shows the great demand for location. In this paper, we will study and implement the TDOA localization algorithm, which is commonly used in UWB positioning system. In fact, the location algorithm is based on the difference of time between the received signals of each base station. Usually we get the time when the base station receives the signal, and then determine the distance from the signal source to the base station, then draw a circle according to the distance between the signal source and the base station, and the intersection point between the two circles is the position of the signal source. Because the absolute time is generally not easy to measure, the time difference between the signal and the base station can be measured. Taking the base station as the focus, the hyperbolic curve is established. The time difference of arrival multiplied by the speed of light is the distance difference between the two base stations and the signal source, then the point on the hyperbolic curve of the signal source. The intersection point of several hyperbolas is the position of the signal source, which is the hyperbolic mathematical model. In this paper, the development of UWB positioning technology at home and abroad is discussed, and its knowledge theory is studied and understood. The commonly used positioning performance index is also introduced briefly. Then, the theoretical knowledge and mathematical model of the main content of the TDOA localization algorithm in this chapter are studied in depth, and the clock synchronization between the base stations required by the TDOA localization algorithm is also studied. A wireless clock synchronization algorithm based on Kalman filtering algorithm is proposed and the corresponding mathematical model is established. The simulation results show that the synchronization effect between base stations is very good under the Kalman filtering algorithm. Finally, the nonlinear equations obtained by TDOA localization algorithm are solved. In this paper, two classical position estimation algorithms, called: Fang algorithm and Chan algorithm, are introduced. The simulation results show that Chan algorithm is more effective than Fang algorithm. Because the Fang algorithm can not use the redundant base station information to estimate, and the Chan algorithm can use the redundant information to estimate, so the Chan algorithm can improve the location accuracy by adding the base station. The simulation results also show that the Chan algorithm can improve the location accuracy by increasing the number of base stations, but when the number of base stations reaches a certain number, the improvement of location accuracy is not obvious. Therefore, the demand for the number of base stations in practical engineering applications of Chan algorithm depends on the situation.
【学位授予单位】:海南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN925
【相似文献】
相关期刊论文 前10条
1 ;A robust TDOA-based location method and its performance analysis[J];Science in China(Series F:Information Sciences);2009年05期
2 吴开兴;张荣华;;基于信息分组的TDOA安全定位算法[J];河北工程大学学报(自然科学版);2011年02期
3 王鹏;雷斌;张洪顺;魏勇;;TDOA定位系统的设计与实现[J];中国无线电;2013年01期
4 孙志国,孙甲琦,郭黎利;复合系统SPECCORR-TDOA估计模型抗干扰性能的研究[J];哈尔滨工程大学学报;2003年06期
5 张毅,罗元,汪纪锋,程时昕;基于蜂窝与同步卫星TDOA定位的比较研究[J];电波科学学报;2004年01期
6 李一兵;伊立峰;叶方;;通信测距复合系统中TDOA估计方法的研究[J];黑龙江大学自然科学学报;2006年05期
7 曹学斌;赵双杰;郭向科;金凤杰;;基于TDOA方法的声被动目标定位系统设计[J];弹箭与制导学报;2006年S6期
8 王洪涛;王洪梅;马启明;;一种基于抗差估计的TDOA无线定位方法[J];科学技术与工程;2008年04期
9 丁学文;龚晓峰;武瑞娟;;TDOA测向定位相关算法的研究[J];现代电子技术;2009年01期
10 金亮;许锐;;区域性TDOA监测定位系统的设计要点[J];邮电设计技术;2009年05期
相关会议论文 前10条
1 龚福春;李文元;聂少涛;;基于3G网TDOA定位的中频误差分析[A];中国通信学会第五届学术年会论文集[C];2008年
2 李莉;邓平;刘林;范平志;;基于TDOA技术的蜂窝定位系统性能分析[A];四川省通信学会2001年学术年会论文集[C];2001年
3 Xin Xu;Wenjie Chen;Mingjun Jiang;;Multi-target Passive Location Based on the Algorithm of TDOA-Camberra[A];第25届中国控制与决策会议论文集[C];2013年
4 杨晟;朱诗兵;乔熔岩;;移动节点非同步TDOA二维测距解析定位[A];全国第三届信号和智能信息处理与应用学术交流会专刊[C];2009年
5 ;Source Localization Using TDOA Measurements with Sensor Location Uncertainty[A];中国自动化学会控制理论专业委员会A卷[C];2011年
6 龚福春;李文元;聂少涛;;基于TDOA的3G通信网移动终端定位技术[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(下册)[C];2008年
7 张宽;赵海;朱剑;李大舟;;基于TDOA的超声波测距系统设计与实现[A];第八届沈阳科学学术年会论文集[C];2011年
8 Siqi Yu;Chenglin Cai;Xiaohui Li;Simin Li;Kequn Deng;;Passive Location of Emitter Source in Low Orbit Dual-satellites System[A];第四届中国卫星导航学术年会论文集-S1 北斗/GNSS导航应用[C];2013年
9 陈新华;杨秀庭;;运动目标TDOA估计的实现[A];中国声学学会2005年青年学术会议[CYCA'05]论文集[C];2005年
10 张保峰;韩燕;张日华;;一种基于TDOA的三维空间无线定位算法[A];2007年中国通信学会“移动增值业务与应用”学术年会论文集[C];2007年
相关博士学位论文 前2条
1 关维国;基于移动广播网的高精度定位关键技术研究[D];北京邮电大学;2011年
2 毛永毅;无线通信系统定位技术的研究[D];中国科学院研究生院(国家授时中心);2008年
相关硕士学位论文 前10条
1 杜天旭;基于声信号到达时间差的被动式目标定位算法与系统研究[D];浙江大学;2015年
2 苏清法;基于TDOA的无线局域网定位系统的研究与实现[D];华侨大学;2015年
3 李元琪;OFDM系统中TDOA估计技术研究[D];电子科技大学;2014年
4 张阳;短波信号TDOA估计与目标定位算法研究[D];大连理工大学;2015年
5 赵海霞;基于TDOA和TOA的定位技术研究[D];西安电子科技大学;2014年
6 王正;基于TDOA的无线传感器网络定位算法研究[D];南京航空航天大学;2014年
7 刘星艳;广义相关时延估计在无源时差定位(TDOA)中的研究与应用[D];兰州交通大学;2015年
8 王宝全;基于TDOA参数估计的LTE定位技术研究[D];南京邮电大学;2015年
9 尹会明;嵌入式信息采集系统关键技术研究与实现[D];北京邮电大学;2013年
10 刘恋;基于TDOA的无线传感器网络节点定位关键算法研究[D];昆明理工大学;2016年
,本文编号:2177168
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2177168.html