基于排序的图像美学质量评估
[Abstract]:Image aesthetic quality assessment is a hot research issue in computer vision field, and has great application prospect, which can be combined with many practical applications. Many related works define it as a classification problem, and use the "high quality" and "low quality" labels to describe the aesthetic quality of pictures, and combine the aesthetic features with the classification label learning classification model. Because the classification label is coarse-grained expression form and low practicability, this paper puts forward the relative ranking of aesthetic quality of fine-grained research. Although the classification model and regression model proposed by related work can also solve the task of aesthetic ranking, their sorting performance is poor because they only use the absolute aesthetic quality of pictures rather than the relative sort relation. Some work put forward the method of ranking prediction based on column ranking. However, in the process of training, the ratio 1) uses all possible sort relationships, but the comparison between pictures with great difference in content is not reasonable. 2) extracting predefined features as aesthetic features. However, this feature can not fully describe the aesthetic attributes of images. Aiming at the above problems, this paper first puts forward an aesthetic sorting scheme based on picture pair, constructs the image pair to reflect the sort relation in the training set, and takes it as the prediction model of sample training ranking, and improves the quality of the training in order to remove the noise. A reasonable picture pair screening strategy was used to filter the samples. In order to further improve the quality of samples, this paper proposes an image pair construction strategy based on image retrieval. Firstly, a content-based image retrieval system is built. According to the specific generation criteria, the query picture and the similar picture constitute a picture pair. In order to get rid of the limitation of predefined aesthetic characteristics, this paper proposes an aesthetic ranking scheme based on deep learning, builds a two-channel convolution neural network and designs the corresponding ranking loss layer, taking the image pair as the input. The network weight parameters are optimized with the order relation as the objective. In the process of testing, the sorting model calculates and outputs the relative aesthetic ranking score of the picture, and then sorts it, but the absolute value of the score is meaningless. In order to verify the validity of the proposed scheme, this paper carries out aesthetic sorting experiments in two large open datasets, CUHKPQ and AVA, and compares them with other schemes. The experimental results confirm the superiority of the proposed scheme in the task of aesthetic ranking.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 周星璞;选择价值工程改进对象的动态排序模型[J];上海机械学院学报;1988年03期
2 王扬;黄亚楼;卢敏;庞晓东;谢茂强;刘杰;;直接优化性能指标的多排序模型融合方法[J];计算机学报;2014年08期
3 肖依永;常文兵;张人;;基于模拟退火算法的多节点订单排序模型[J];计算机应用研究;2009年02期
4 姜文志;刘涛;栗飞;;基于作战辅助决策系统的目标威胁评估排序模型[J];兵工自动化;2010年06期
5 孙焰,李致中;单线区间列车最优运行次序的排序模型及解法[J];铁道学报;1993年01期
6 王俊田;陈骞;欧渊;董良东;刘普高;;基于检测结果的数据质量排序模型[J];兵工自动化;2007年09期
7 姜涛;;病态信息修正中的建议值排序模型研究[J];科学技术与工程;2007年22期
8 潘皖印;序分值综合排序模型的研究[J];科学管理研究;1998年01期
9 柯昌英;基于JIT的一种混流生产排序模型[J];科技进步与对策;2005年05期
10 赵志宏;杨琦;;科技论文质量综合排序模型[J];长安大学学报(社会科学版);2008年03期
相关会议论文 前3条
1 曹迎槐;;排序模型之TKW递推算法研究[A];管理科学与系统科学研究新进展——第7届全国青年管理科学与系统科学学术会议论文集[C];2003年
2 李波;邱锡鹏;吴立德;;使用语法分析和统计方法构建问答系统的答案排序模型[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
3 吴强;王同根;;Fuzzy—grey综合评判排序模型[A];数学及其应用文集——中南模糊数学和系统分会第三届年会论文集(下卷)[C];1995年
相关博士学位论文 前2条
1 彭公孚;面向信息融合的句子排序若干关键技术研究[D];武汉大学;2010年
2 程明宝;工件加工时间非恒定的排序模型研究[D];上海大学;2006年
相关硕士学位论文 前10条
1 张栋;蔬果类商品的包装作业排序模型研究[D];大连理工大学;2015年
2 姬赛;两类半在线排序模型的算法性能分析[D];湖南师范大学;2016年
3 张潇潇;航路交叉点容量优化和排序模型研究[D];中国民航大学;2016年
4 李梁;面向不同对象的搜索引擎中的排序模型与性能评价[D];中国科学技术大学;2016年
5 徐菁;点评类社区高效评论挖掘研究[D];华南理工大学;2016年
6 吕豪;基于排序的图像美学质量评估[D];中国科学技术大学;2017年
7 翟倩;在线评论有用性排序模型研究[D];吉林大学;2017年
8 录岭法;关于两种现代排序模型的一些结果[D];郑州大学;2005年
9 郭文静;两阶段模糊柔性流水车间排序模型及算法[D];南京理工大学;2006年
10 张U,
本文编号:2223589
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2223589.html