高校图书推荐系统算法与模型的研究

发布时间:2018-09-07 16:55
【摘要】:21世纪以来,全世界科技水平不断提高,信息呈现爆炸式增长,人们从寻找信息的模式变成了寻找有用信息的模式。从海量信息中寻找到对自己有用信息的手段有很多,推荐系统是其中最重要也是最广泛使用的手段之一。各大网商通过使用推荐系统对用户进行个性化的推荐,都取得了不错的成果,这也为推荐系统在高等院校图书推荐领域的应用提供了可能性。推荐系统中的算法有很多,其中最经典应用最广泛的是协同过滤算法。本文对基于用户和基于项目的协同过滤算法进行了深入研究,针对高校图书推荐的特殊性,如借阅数据而无法直接使用,相似度矩阵太过稀疏而无法产生推荐等问题,改进了这两种算法。但是这两个算法在高校图书推荐领域都有着各自的优劣势,通过对两者的结合,提出了混合推荐系统模型。最后通过实验对比了混合推荐算法与单一推荐算法的各项评价指标,为应用于高校图书推荐提供了理论支撑。本研究的主要工作有以下五个部分:第一部分,深入研究了推荐系统的原理以及一些经典的推荐算法,并对推荐算法应用在高校图书推荐领域的可行性进行了分析,然后构建了基于读者(RCF)和基于图书(BCF)的协同过滤算法模型。第二部分,由于高校图书推荐不同于电影推荐或者商品推荐,它不包含用户对物品的评分,针对这一特点,通过对图书借阅记录的处理,提出一种量化评分模型,将读者对图书的偏好定量化,在此基础上,构建了读者-图书的评分矩阵。第三部分,针对读者-图书评分矩阵过于稀疏的特点,将中文图书分类法与图书借阅记录相结合,构建了读者-图书类别评分矩阵,然后在此基础上改进了基于读者和基于图书的协同过滤算法。第四部分,通过对改进后的RCF和BCF结合,构建了混合推荐系统(HCF)模型,然后进行了实验验证,并评估了三种算法模型。第五部分,根据模型的结果,对高校图书推荐系统的应用提出了自己的建议。
[Abstract]:Since the 21st century, the level of science and technology all over the world has been improved, and the information has been increasing explosively. People have changed from the mode of searching for information to the mode of seeking useful information. There are many ways to find useful information from mass information, and recommendation system is one of the most important and widely used methods. By using the recommendation system, all the network merchants have achieved good results, which provides the possibility for the application of the recommendation system in the field of book recommendation in colleges and universities. There are many algorithms in recommendation system, among which the most classical one is collaborative filtering algorithm. In this paper, the collaborative filtering algorithm based on user and item is studied in depth. Aiming at the particularity of book recommendation in colleges and universities, such as borrowing data and not using it directly, the similarity matrix is too sparse to produce recommendation and so on. These two algorithms are improved. However, these two algorithms have their own advantages and disadvantages in the field of book recommendation in colleges and universities. Through the combination of the two algorithms, a hybrid recommendation system model is proposed. Finally, the evaluation indexes of mixed recommendation algorithm and single recommendation algorithm are compared through experiments, which provides theoretical support for the application of book recommendation in colleges and universities. The main work of this study is as follows: in the first part, the principle of recommendation system and some classical recommendation algorithms are studied in depth, and the feasibility of applying recommendation algorithm in the field of book recommendation in colleges and universities is analyzed. Then a collaborative filtering algorithm model based on reader (RCF) and book (BCF) is constructed. The second part, because the university book recommendation is different from the movie recommendation or the commodity recommendation, it does not contain the user to the article score, in view of this characteristic, through the processing to the book loan record, proposed one kind of quantification score model. On the basis of quantifying readers' preference for books, a reader-book scoring matrix is constructed. In the third part, aiming at the characteristic that the reader-book scoring matrix is too sparse, this paper combines the Chinese book classification method with the book borrowing record, and constructs the reader-book classification scoring matrix. Then the collaborative filtering algorithm based on readers and books is improved. In the fourth part, through the combination of improved RCF and BCF, the (HCF) model of hybrid recommendation system is constructed, and then the experimental verification is carried out, and three kinds of algorithm models are evaluated. In the fifth part, according to the results of the model, the author puts forward some suggestions on the application of the book recommendation system in colleges and universities.
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3

【参考文献】

相关期刊论文 前10条

1 王成;朱志刚;张玉侠;苏芳芳;;基于用户的协同过滤算法的推荐效率和个性化改进[J];小型微型计算机系统;2016年03期

2 王连喜;;一种面向高校图书馆的个性化图书推荐系统[J];现代情报;2015年12期

3 江周峰;杨俊;鄂海红;;结合社会化标签的基于内容的推荐算法[J];软件;2015年01期

4 张闪闪;黄鹏;;高校图书馆图书推荐系统中的稀疏性问题实证探析[J];大学图书馆学报;2014年06期

5 宋晓丹;李雪垠;李晋瑞;;《中国图书馆分类法》(第5版)的特殊仿分及其分类方法研究[J];国家图书馆学刊;2014年04期

6 张雯;;关于数字图书馆的发展和思考[J];现代经济信息;2014年01期

7 马仲兵;;基于关联规则的高校图书馆个性化推荐模型[J];新世纪图书馆;2013年07期

8 刘书芬;;近十年高校图书馆图书推荐研究综述[J];韶关学院学报;2013年07期

9 王国霞;刘贺平;;个性化推荐系统综述[J];计算机工程与应用;2012年07期

10 董坤;;基于协同过滤算法的高校图书馆图书推荐系统研究[J];现代图书情报技术;2011年11期

相关博士学位论文 前1条

1 刘青文;基于协同过滤的推荐算法研究[D];中国科学技术大学;2013年

相关硕士学位论文 前5条

1 李容;协同过滤推荐系统中稀疏性数据的算法研究[D];电子科技大学;2016年

2 黄传飞;基于项目的协同过滤算法的改进[D];江西师范大学;2015年

3 方洪鹰;数据挖掘中数据预处理的方法研究[D];西南大学;2009年

4 张娜;电子商务环境下的个性化信息推荐服务及应用研究[D];合肥工业大学;2007年

5 杨瑞峰;WEB上基于文本挖掘的个性化检索系统的设计与实现[D];电子科技大学;2003年



本文编号:2228855

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2228855.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5ab43***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com