基于微信服务号的企业智能客服系统的设计与实现
[Abstract]:WeChat is a particularly popular chat software. On January 21, 2011, WeChat launched a 1.0 beta version, which supports the introduction of existing contact information through the QQ number, enabling instant messaging. Simple features such as sharing photos and changing avatars, and a new 2.0 version of voice-to-speech features was introduced on May 10, 2011. The WeChat public platform was officially launched on 17 August 2012, with major changes made on November 29, 2012, and February 6, 2013, respectively. Add the function of editing text message, check the sensitive words and security of the sent content, add the advanced function option, the user can choose one to use in the edit mode and development mode, and turn on the authentication of real name. To present, the operation of WeChat platform has matured, also had its own user group. WeChat has the characteristics of a large number of user groups and its ease of operation, which has established the status of the best carrier of light application enterprise intelligent customer service. In the face of a large number of unscheduled e-commerce users, the traditional artificial customer service has been very difficult to meet the needs of the market. The hardware products of various enterprises compete equally, and consumers often demand more service attitude, and experience emotion and culture. Therefore, the mature intelligent customer service products will gradually evolve into a certain enterprise concept and culture of intelligent customer service in the future. Whether it is intelligent customer service based on e-commerce enterprise platform or other forms of enterprise intelligent customer service, it will be a way to improve the user experience. In this paper, the enterprise intelligent customer service is implemented on WeChat platform. In the part of query database, the nearest neighbor query algorithm TPR- tree is used to realize the search of query information. When users use intelligent customer service, they use intelligent queuing algorithm to calculate the waiting time, so as to avoid the situation of waiting timeout. At present, the enterprise-based intelligent customer service has been in the trial operation phase.
【学位授予单位】:沈阳师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.52
【参考文献】
相关期刊论文 前8条
1 王鸥;赵永彬;刚毅凝;;智能语音识别技术在信息通信客服系统中的应用[J];电子技术与软件工程;2016年07期
2 李斐;邵晓东;周力恒;金阳;;智能客服机器人的现状及发展[J];中国传媒科技;2015年Z1期
3 韩冬煦;常宝宝;;中文分词模型的领域适应性方法[J];计算机学报;2015年02期
4 张磊;秦广宏;;基于微信公众平台的图书馆移动服务研究[J];图书馆学刊;2015年01期
5 石凯;谌志群;;基于微信的自动问答系统研究[J];计算机时代;2014年09期
6 张蓓;窦天芳;张成昱;李洁芳;;开发模式下图书馆微信公众平台服务的设计与实现[J];现代图书情报技术;2014年01期
7 樊玉俊;和娜;左振哲;陈强;;智能机器人在银行客服中心的应用研究[J];农村金融研究;2014年01期
8 李敬伟;刘丹;;一种基于FAQ的自动应答系统的研究与设计[J];河南机电高等专科学校学报;2012年04期
相关博士学位论文 前1条
1 包亮;基于GIS/SOTER数据库的区域土地利用系统分析[D];中国农业大学;2003年
相关硕士学位论文 前10条
1 曾庆妍;基于ALICE的研究生招生咨询智能聊天系统设计与实现[D];山东师范大学;2016年
2 岳芸;电商客服自动问答系统的商品意图识别[D];五邑大学;2016年
3 张臣;基于微信公众号的医疗服务系统的设计与实现[D];北京交通大学;2016年
4 文博;面向智能客服机器人的交互式问句理解研究[D];哈尔滨工业大学;2014年
5 邓盐婷;基于范式的数据库快速分析与设计[D];安徽理工大学;2014年
6 徐启菊;基于T-CRFs模型语义标注在智能问答系统中的应用研究[D];安徽理工大学;2014年
7 肖富春;基于微信的中小企业CRM系统设计与实现[D];山东大学;2014年
8 冯德虎;基于ALICE的研究生招生咨询智能聊天机器人研究与实现[D];西南交通大学;2013年
9 李欣;基于Web的中小企业CRM系统的设计与实现[D];山东大学;2011年
10 曹亮;基于缓存的TPR树索引方法的研究[D];燕山大学;2010年
,本文编号:2249544
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2249544.html