基于实时特征值的风机振动状态监测与数据挖掘的故障诊断研究
[Abstract]:Fan is widely used in petroleum, chemical, electric power, metallurgical and other industries. With the equipment running for a long time, the probability of failure is greatly increased, which may make it stop production, which will cause huge economic losses and safety risks. Therefore, the condition monitoring and fault diagnosis of fan equipment is of great significance. In this paper, the status quo of status monitoring and fault diagnosis of rotating machinery at home and abroad is introduced in detail. It is found that there are mature methods and techniques for vibration signal monitoring both at home and abroad. However, the frequency-domain method commonly used in fault diagnosis is still offline because of the large amount of calculation. The analysis of diagnosis results needs to be carried out manually, and all kinds of application methods are highly professional. It is difficult to complete real-time calculation and on-line analysis and judgment, and lacks on-line and intelligent methods and techniques. With the reduction of the cost of local monitoring equipment, it is possible to monitor the operating condition of fan equipment installation sensors. By collecting the time domain characteristic parameters of the fan equipment running in the whole period, the change of the fan characteristic parameters under different running conditions is obtained, and the database of the fan equipment running characteristic parameters is formed, and the method of data mining is combined. A fault diagnosis model based on time domain eigenvalue can be established from massive data. The advantage of this method is that the time domain eigenvalue is real-time and on-line, and the fault diagnosis model will be real-time and on-line. At the same time, the accuracy of fault diagnosis will be improved with the expansion of database and the improvement of data mining method. In order to solve the problem of stateless monitoring of CAP1400 containment recirculation cooling fan, the main work of this paper is as follows: around the basic concept of vibration, The research results of typical vibration faults of rotating machinery and the methods of feature extraction and analysis of vibration signals are introduced, and some typical characteristic values in time domain are selected according to international and domestic standards and industry standards for specific analysis. The foundation of the next fault diagnosis method is established. Secondly, the software of fan vibration condition monitoring platform is designed and developed, and the fan running condition monitoring test is carried out to verify and perfect the function of the vibration condition monitoring platform. The calculation and data storage of fan characteristic parameters are completed, and the database of fan vibration eigenvalue is established. Finally, based on the vibration characteristic value database, the data mining of the characteristic value parameter is carried out. The distribution table of eigenvalue sensitivity level of different vibration faults is established, the potential relationship between different characteristic parameters is determined, and the operating state of fan is evaluated and predicted. On this basis, a fault diagnosis model of fan vibration based on real-time eigenvalue data mining is developed, and the fault diagnosis model is used to analyze and diagnose the actual faults online. The method of diagnosis in this paper has been effectively applied on the test-bed, which shows that the diagnosis method based on data mining can effectively complete the on-line analysis of vibration faults and the diagnosis of different fault causes in real time. It has engineering application value and popularizing value to realize field real time monitoring and intelligent remote diagnosis of vibration of rotating machinery such as fan pump and so on which are widely used in mechanical industry.
【学位授予单位】:上海发电设备成套设计研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH43;TP311.13
【参考文献】
相关期刊论文 前10条
1 徐晓峰;刘川槐;孟德彪;;600 MW机组非典型性一次风机振动故障诊断[J];安徽电力;2016年02期
2 杨秀文;;旋转机械频谱智能分析系统的研究与实现[J];山东工业技术;2016年09期
3 陈钊;任瑞冬;符娆;;一种基于时域滤波算法的振动信号有效值计算方法研究[J];现代机械;2015年03期
4 王维友;杨璋;;振动分析在风机轴承故障诊断中的应用[J];装备维修技术;2015年02期
5 李春芳;黄建民;;基于小波分析的转子不平衡故障诊断与控制技术研究[J];宇航计测技术;2015年02期
6 张文秀;武新芳;;风电机组状态监测与故障诊断相关技术研究[J];电机与控制应用;2014年02期
7 韩国良;;频谱分析法对转子不平衡故障的分析及诊断[J];化工管理;2014年03期
8 任学平;单立伟;;基于EMD-ICA和HMM的风机故障分类方法[J];汽轮机技术;2013年04期
9 马中存;赵军;张丽蓉;;旋转机械动静碰摩故障的振动监测研究[J];机械工程师;2013年08期
10 吴兴伟;;基于DDAGSVM的离心风机振动故障诊断[J];风机技术;2013年03期
相关博士学位论文 前3条
1 鲁文波;基于声场空间分布特征的机械故障诊断方法及其应用研究[D];上海交通大学;2012年
2 隋文涛;滚动轴承表面损伤故障的特征提取与诊断方法研究[D];山东大学;2011年
3 侯军虎;基于多参数的风机状态监测与故障诊断的研究[D];华北电力大学(河北);2004年
相关硕士学位论文 前10条
1 徐明林;基于小波降噪和经验模态分解的滚动轴承故障诊断[D];哈尔滨工业大学;2013年
2 曹亭;火炮状态诊断与应急处理方法研究[D];南京理工大学;2013年
3 何亮;基于EMD技术的滚动轴承故障诊断研究[D];大连理工大学;2012年
4 黄超勇;基于粒子群优化支持向量机决策树的齿轮箱故障诊断方法[D];太原理工大学;2012年
5 周泽民;基于嵌入式系统的旋转机械故障诊断仪的开发研究[D];南华大学;2012年
6 杨玉婧;基于神经网络的旋转机械振动故障诊断的研究[D];华北电力大学;2012年
7 许雪贵;基于WEB的机电设备远程监测系统的应用研究[D];电子科技大学;2011年
8 王宏超;基于全矢谱的旋转机械故障特征提取研究[D];郑州大学;2011年
9 徐华;基于LabVIEW和分形技术的状态监测与故障诊断系统的研究[D];武汉科技大学;2008年
10 王立荣;设备振动监测分析诊断系统研究[D];华北电力大学(北京);2008年
,本文编号:2272146
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2272146.html