基于实时特征值的风机振动状态监测与数据挖掘的故障诊断研究

发布时间:2018-10-15 09:45
【摘要】:风机普遍应用于石油、化工、电力、冶金等行业,随着设备长时间的运行,发生故障的概率大大上升,便可能使其停产,会造成巨大的经济损失和安全隐患。因此,对风机设备进行状态监测与故障诊断具有极其重要的意义。本文详细介绍了国内外旋转机械状态监测和故障诊断技术的发展现状,发现了目前的研究现状是:在振动信号的监测上国内外都已有较成熟的方法和技术,但是在故障诊断上常用的频域方法由于计算量大,基本上仍然是离线式的。诊断结果的分析需要人工进行,各种应用方法的专业性强,不易完成实时计算和在线分析判断,缺少在线的、智能的方法和技术。随着就地监测设备成本的降低,对风机设备安装传感器进行运行状况监测变成了可能。通过采集风机设备全周期运行的时域特征参数,得到风机在不同运行状态下的特征参数变化,形成风机设备运行特征参数数据库,结合数据挖掘的方法,能够从海量的数据中建立基于时域特征值的故障诊断模型。这样做的优点是由于时域特征值是实时的、在线的,故障诊断模型也将是实时的、在线的,同时故障诊断的准确率也将随着数据库的扩充以及数据挖掘方法的改进而不断提高。本文为解决CAP1400安全壳再循环冷却风机无状态监测的问题,主要进行了以下工作:围绕振动的基本概念、旋转机械典型振动故障研究成果以及振动信号的特征提取和分析方法作了介绍,并且根据国际国内以及行业标准选取了部分时域的典型特征值作了具体的分析,为下一步的故障诊断方法建立了基础;其次,设计开发了风机振动状态监测平台软件部分,并且进行了风机运行状态监测试验,验证和完善了振动状态监测平台的功能,完成了风机特征参数的计算和数据存储,建立了风机振动特征值数据库;最后,依托于振动特征值数据库,对特征值参数进行了数据挖掘,建立了不同振动故障的特征值敏感等级分布表,确定了不同特征参数之间的潜在关系,评估预测了风机运行状态。在此基础上,开发了基于实时特征值数据挖掘的风机振动故障诊断模型;应用该振动故障诊断模型对实际故障进行在线分析和诊断。本论文的诊断方法,在试验台架上获得了有效的应用,表明了基于数据挖掘的诊断方法能够实时有效的完成振动故障的在线分析和不同故障原因的诊断,对实现机械行业广泛应用的风机、水泵等旋转机械的现场实时监测和振动智能远程诊断,具有工程应用价值和推广价值。
[Abstract]:Fan is widely used in petroleum, chemical, electric power, metallurgical and other industries. With the equipment running for a long time, the probability of failure is greatly increased, which may make it stop production, which will cause huge economic losses and safety risks. Therefore, the condition monitoring and fault diagnosis of fan equipment is of great significance. In this paper, the status quo of status monitoring and fault diagnosis of rotating machinery at home and abroad is introduced in detail. It is found that there are mature methods and techniques for vibration signal monitoring both at home and abroad. However, the frequency-domain method commonly used in fault diagnosis is still offline because of the large amount of calculation. The analysis of diagnosis results needs to be carried out manually, and all kinds of application methods are highly professional. It is difficult to complete real-time calculation and on-line analysis and judgment, and lacks on-line and intelligent methods and techniques. With the reduction of the cost of local monitoring equipment, it is possible to monitor the operating condition of fan equipment installation sensors. By collecting the time domain characteristic parameters of the fan equipment running in the whole period, the change of the fan characteristic parameters under different running conditions is obtained, and the database of the fan equipment running characteristic parameters is formed, and the method of data mining is combined. A fault diagnosis model based on time domain eigenvalue can be established from massive data. The advantage of this method is that the time domain eigenvalue is real-time and on-line, and the fault diagnosis model will be real-time and on-line. At the same time, the accuracy of fault diagnosis will be improved with the expansion of database and the improvement of data mining method. In order to solve the problem of stateless monitoring of CAP1400 containment recirculation cooling fan, the main work of this paper is as follows: around the basic concept of vibration, The research results of typical vibration faults of rotating machinery and the methods of feature extraction and analysis of vibration signals are introduced, and some typical characteristic values in time domain are selected according to international and domestic standards and industry standards for specific analysis. The foundation of the next fault diagnosis method is established. Secondly, the software of fan vibration condition monitoring platform is designed and developed, and the fan running condition monitoring test is carried out to verify and perfect the function of the vibration condition monitoring platform. The calculation and data storage of fan characteristic parameters are completed, and the database of fan vibration eigenvalue is established. Finally, based on the vibration characteristic value database, the data mining of the characteristic value parameter is carried out. The distribution table of eigenvalue sensitivity level of different vibration faults is established, the potential relationship between different characteristic parameters is determined, and the operating state of fan is evaluated and predicted. On this basis, a fault diagnosis model of fan vibration based on real-time eigenvalue data mining is developed, and the fault diagnosis model is used to analyze and diagnose the actual faults online. The method of diagnosis in this paper has been effectively applied on the test-bed, which shows that the diagnosis method based on data mining can effectively complete the on-line analysis of vibration faults and the diagnosis of different fault causes in real time. It has engineering application value and popularizing value to realize field real time monitoring and intelligent remote diagnosis of vibration of rotating machinery such as fan pump and so on which are widely used in mechanical industry.
【学位授予单位】:上海发电设备成套设计研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH43;TP311.13

【参考文献】

相关期刊论文 前10条

1 徐晓峰;刘川槐;孟德彪;;600 MW机组非典型性一次风机振动故障诊断[J];安徽电力;2016年02期

2 杨秀文;;旋转机械频谱智能分析系统的研究与实现[J];山东工业技术;2016年09期

3 陈钊;任瑞冬;符娆;;一种基于时域滤波算法的振动信号有效值计算方法研究[J];现代机械;2015年03期

4 王维友;杨璋;;振动分析在风机轴承故障诊断中的应用[J];装备维修技术;2015年02期

5 李春芳;黄建民;;基于小波分析的转子不平衡故障诊断与控制技术研究[J];宇航计测技术;2015年02期

6 张文秀;武新芳;;风电机组状态监测与故障诊断相关技术研究[J];电机与控制应用;2014年02期

7 韩国良;;频谱分析法对转子不平衡故障的分析及诊断[J];化工管理;2014年03期

8 任学平;单立伟;;基于EMD-ICA和HMM的风机故障分类方法[J];汽轮机技术;2013年04期

9 马中存;赵军;张丽蓉;;旋转机械动静碰摩故障的振动监测研究[J];机械工程师;2013年08期

10 吴兴伟;;基于DDAGSVM的离心风机振动故障诊断[J];风机技术;2013年03期

相关博士学位论文 前3条

1 鲁文波;基于声场空间分布特征的机械故障诊断方法及其应用研究[D];上海交通大学;2012年

2 隋文涛;滚动轴承表面损伤故障的特征提取与诊断方法研究[D];山东大学;2011年

3 侯军虎;基于多参数的风机状态监测与故障诊断的研究[D];华北电力大学(河北);2004年

相关硕士学位论文 前10条

1 徐明林;基于小波降噪和经验模态分解的滚动轴承故障诊断[D];哈尔滨工业大学;2013年

2 曹亭;火炮状态诊断与应急处理方法研究[D];南京理工大学;2013年

3 何亮;基于EMD技术的滚动轴承故障诊断研究[D];大连理工大学;2012年

4 黄超勇;基于粒子群优化支持向量机决策树的齿轮箱故障诊断方法[D];太原理工大学;2012年

5 周泽民;基于嵌入式系统的旋转机械故障诊断仪的开发研究[D];南华大学;2012年

6 杨玉婧;基于神经网络的旋转机械振动故障诊断的研究[D];华北电力大学;2012年

7 许雪贵;基于WEB的机电设备远程监测系统的应用研究[D];电子科技大学;2011年

8 王宏超;基于全矢谱的旋转机械故障特征提取研究[D];郑州大学;2011年

9 徐华;基于LabVIEW和分形技术的状态监测与故障诊断系统的研究[D];武汉科技大学;2008年

10 王立荣;设备振动监测分析诊断系统研究[D];华北电力大学(北京);2008年



本文编号:2272146

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2272146.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f5bef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com