基于盲源分离的车载语音增强算法研究
[Abstract]:As a convenient, fast and effective way of communication, speech plays a very important role in people's daily life. Along with the progress of social science and technology and the rapid development of artificial intelligence, the voice signal gradually becomes an important way of human-machine interaction. It is more convenient, efficient and safe than the traditional man-machine interactive mode, so it is widely used in industrial control and medical assistance. Security and security, smart home and other aspects. However, in the actual application scene, the voice signal is inevitably disturbed by surrounding environmental noise, and then the voice quality is influenced, and the normal person-machine interaction function can not be completed. Therefore, speech enhancement plays an important role in suppressing noise components and improving the quality of speech. Aiming at this particular application scene of vehicle-mounted environment, the noise signal has low frequency distribution, the prior knowledge is not easy to obtain, and the mixing condition of the voice signal is complicated and the like, so that many voice enhancement algorithms do not apply to the vehicle-mounted environment very well. Therefore, based on the analysis of vehicle-mounted noise and vehicle-mounted acoustic scene, this paper establishes the convolution mixture model of noise signal and speech signal, and researches the validity and feasibility of blind source separation (BSS) technology in vehicle-mounted environment. so as to improve the quality and the intelligibility of the noisy speech signal under the vehicle-mounted environment. In this paper, the following work is carried out: (1) on-board acoustic scene analysis modeling and noise estimation algorithm research. According to the inherent characteristics of vehicle-mounted environment, the source of vehicle-mounted noise and the propagation path of the driver's voice signal in the vehicle are analyzed, and the convolution mixture model of the noise signal and the voice signal in the vehicle is established. Since most speech enhancement algorithms require an estimate of noise as a priori knowledge of noise cancellation, the accuracy of the noise estimation will directly affect the performance of these speech enhancement algorithms. On the basis of summarizing some common speech processing theories, this paper studies the existing commonly used noise estimation algorithms, including the speech endpoint detection noise estimation algorithm and the minimum control recursive average noise estimation algorithm. (2) Speech quality evaluation and speech enhancement algorithm research. The main objective evaluation criteria of speech signal quality are summarized in this paper, and the advantages and disadvantages of these evaluation standards are analyzed. At the same time, we construct a small vocabulary speech recognition engine based on Hidden Markov Model (HMM) based on Hidden Markov Model (HMM) and integrate the speech recognition rate into the evaluation system without reference source speech quality. For the research of speech enhancement algorithm, the paper firstly analyzes the two classical speech enhancement algorithms of spectral subtraction and Wiener filtering, and gives their noise elimination results for vehicle-mounted noisy speech signal; secondly, aiming at the deficiency of some traditional speech enhancement algorithms, This paper presents an improved speech enhancement algorithm for small wave threshold functions, which can effectively suppress wideband noise and improve speech quality. Finally, the basic theoretical framework and implementation principle of Independent Component Analysis (ICA) are described. In this paper, we focus on the process of using complex value ICA based on negative entropy in the frequency domain blind deconvolution to realize the speech enhancement. The ICA speech enhancement process not only can better fit the convolution mixing model, but also can make up the deficiency of the existing speech enhancement algorithm in the vehicle-mounted environment. (3) Research on vehicle-mounted speech enhancement algorithm based on convolution ICA. Based on the convolution mixing characteristics of speech signal and vehicle-mounted noise signal and their non-Gaussian distribution in frequency domain, the speech enhancement of vehicle-mounted noisy speech signal using convolution ICA based on negative entropy is proposed, and the enhancement process is optimized. In this paper, an on-board noisy speech signal corpus was constructed under three acoustic scenes of environment, indoor environment and real vehicle environment, and the speech noise was eliminated by convolution ICA based on negative entropy. The experimental results show that the recognition rate of the speech signal after the convolution ICA is improved by 18. 33%, 30% and 27. 5% respectively, which shows the validity and robustness of the convolution ICA in the vehicle-mounted acoustic scene. In the end, the speech noise elimination effect of blind deconvolution ICA in frequency domain is studied and explained by the influence of frame length and frame shift size of speech signal. (4) Research and implementation of speech enhancement system under complex environment. In this paper, based on the studied noise estimation algorithm and speech enhancement algorithm, a part of the algorithm is selected to combine with the speech media control logic, and the speech enhancement system under a complex environment is realized with C ++ under the Windows platform. The system has the functions of voice waveform display, frequency spectrum display, selective speech enhancement, voice play preservation and the like. The test results show that the system not only has better speech enhancement performance, but also has better reliability and robustness.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN912.3
【相似文献】
相关期刊论文 前10条
1 胡光锐,虞晓;基于二阶前向结构和信息最大理论的语音增强算法[J];上海交通大学学报;2000年07期
2 姚峰英,张敏;用于语音增强的高频信噪比度量[J];声学学报;2002年05期
3 彭煊,刘金福,王炳锡;基于独立分量分析的语音增强[J];信号处理;2002年05期
4 王金明,张雄伟;一种基于自适应模糊滤波的语音增强方法[J];解放军理工大学学报(自然科学版);2003年01期
5 杨汇军,郑海英,王立红;语音增强方法的研究[J];辽宁工学院学报;2003年05期
6 徐爽,韩芳芳,郑德忠;基于阈值的小波域语音增强新算法[J];传感技术学报;2004年01期
7 孙新德;一种改进的语音增强方法及实现[J];郑州航空工业管理学院学报(社会科学版);2005年04期
8 钱国青;赵鹤鸣;;基于改进谱减算法的语音增强新方法[J];计算机工程与应用;2005年35期
9 王晶,傅丰林,张运伟;语音增强算法综述[J];声学与电子工程;2005年01期
10 杨毅;杨宇;余达太;;语音增强及其消噪能力研究[J];微电子学与计算机;2006年07期
相关会议论文 前10条
1 陈凯;俞蒙槐;胡上序;付强;;语音增强系统性能评测方法综述[A];第四届全国人机语音通讯学术会议论文集[C];1996年
2 王建波;林本浩;田春明;刘睿;;语音增强及其相关技术研究[A];2009通信理论与技术新发展——第十四届全国青年通信学术会议论文集[C];2009年
3 徐舒;孙洪;;基于融合迭代的语音增强方法[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
4 牛刚;任新智;吴国庆;;谐波能量汇集度在语音增强中的应用[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年
5 国雁萌;;一种极低信噪比条件下的语音增强方法[A];第六届全国人机语音通讯学术会议论文集[C];2001年
6 江峰;李晓东;;适用于抑制非平稳背景噪声的语音增强算法[A];中国声学学会2003年青年学术会议[CYCA'03]论文集[C];2003年
7 阎兆立;杜利民;;维纳后滤波语音增强算法研究[A];中国声学学会2005年青年学术会议[CYCA'05]论文集[C];2005年
8 刘淑华;胡强;覃团发;万海斌;;语音增强算法的研究[A];2005通信理论与技术新进展——第十届全国青年通信学术会议论文集[C];2005年
9 魏臻;张景达;陆阳;;嵌入式系统中语音增强改进算法的研究[A];2007'中国仪器仪表与测控技术交流大会论文集(一)[C];2007年
10 杨威明;;基于阈值的小波变换语音增强方法[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(上册)[C];2008年
相关博士学位论文 前10条
1 欧世峰;变换域语音增强算法的研究[D];吉林大学;2008年
2 尹伟;基于模型的语音增强方法及质量评估研究[D];武汉大学;2009年
3 王海艳;基于统计模型的语音增强算法研究[D];吉林大学;2011年
4 方瑜;语音增强相关问题研究[D];北京邮电大学;2012年
5 姚峰英;语音增强系统的研究与实现[D];中国科学院上海冶金研究所;2001年
6 夏丙寅;面向移动通信的单通道语音增强方法研究[D];北京工业大学;2014年
7 徐勇;基于深层神经网络的语音增强方法研究[D];中国科学技术大学;2015年
8 陶智;低信噪比环境下语音增强的研究[D];苏州大学;2011年
9 王娜;基于小波变换与约束方差噪声谱估计的语音增强算法研究[D];燕山大学;2011年
10 赵彦平;基于稀疏表示的语音增强方法研究[D];吉林大学;2014年
相关硕士学位论文 前10条
1 肖佩霖;双通道语音增强系统设计与实现[D];哈尔滨工业大学;2011年
2 陈成斌;针对于家居环境的语音增强系统的研究与开发[D];华南理工大学;2015年
3 魏有权;基于噪声估计的语音增强算法研究[D];昆明理工大学;2015年
4 胡勇;麦克风阵列语音增强算法研究[D];电子科技大学;2014年
5 曹后斌;有色背景噪声环境下语音增强系统的设计与实现[D];电子科技大学;2014年
6 马小惠;阵列语音增强在车载环境中的应用[D];大连理工大学;2015年
7 李达;无线声学传感器网络中分布式语音增强方法研究[D];大连理工大学;2015年
8 高珍珍;基于梅尔频谱域HMM的语音增强方法研究[D];北京工业大学;2015年
9 宋环宇;全数字助听器语音增强算法研究[D];哈尔滨工业大学;2014年
10 王永杰;基于麦克风阵列的语音增强算法研究[D];西安电子科技大学;2014年
,本文编号:2284152
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2284152.html