多关节串联机器人的建模与运动控制

发布时间:2019-04-27 19:09
【摘要】:我国是一个制造业大国,要向着制造业强国的方向转变,工业机器人在其中发挥着非常重要的作用。在机械臂的研究中,运动学是基础,运动规划是期望轨迹来源,轨迹跟踪控制是核心。本文基于这三个方面做出了相应研究。(1)机械臂的运动学:首先,以Denso VP6242G机器人为对象,推导出正运动学方程,根据正运动学方程用传统的反变换法解出运动学逆解,并仿真验证了运动学正逆解的正确性;然后,针对传统方法对一般结构的机械臂运动学逆解无法求解的问题,研究了一种适用于任何结构的不含反三角的高精度实时求解运动学逆解的解法,该解法基于改进的万有引力粒子群算法(PSOGSA)。通过仿真验证了该解法的准确性、快速性和求解唯一性;最后,在工具坐标系标定中,针对装有工具的机械臂标定困难的偏差大的问题,在多点多姿态估算法的基础上研究了一种新的快捷标定方法并加入判误机制,通过实验验证了所研究算法的正确性。(2)机械臂的运动规划:在总结一般形式运动规划的基础上,探讨用人工势场法自动避障的路径规划,并对该方法进行了简单避障仿真。同时,研究了一种5-3-5样条曲线插值的关节轨迹规划方法,该方法在保障速度、加速度连续可导的前提下,还能保障加加速度连续且起止于零,比常规方法更有利于抑制机械臂的振动,通过Matlab仿真和Denso机械臂平台验证了该方法的有效性。(3)机械臂的轨迹跟踪控制:通过简化Puma机械臂的六轴动力学模型得到后三轴锁死的前三轴模型,并在总结分析常用关节期望轨迹生成方法的基础上,得到机械臂关节轨迹跟踪控制的通用结构。同时,研究了PD、基于重力补偿的PD、基于计算力矩补偿的PD等关节轨迹跟踪控制方法,在此基础上研究了时变PD参数的计算力矩神经网络补偿控制方法,有效改善了综合控制效果。
[Abstract]:China is a big manufacturing country. Industrial robots play a very important role in the direction of changing to a powerful manufacturing country. In the research of manipulator, kinematics is the foundation, motion planning is the expected trajectory source, trajectory tracking control is the core. This paper makes corresponding research based on these three aspects. (1) Kinematics of the manipulator: firstly, taking the Denso VP6242G robot as the object, the forward kinematics equation is deduced, according to the forward kinematics equation, the inverse kinematics solution is solved by the traditional inverse transformation method, and the kinematics inverse solution is obtained by using the traditional inverse transformation method according to the forward kinematics equation. The correctness of forward and inverse kinematics solution is verified by simulation. Then, aiming at the problem that the traditional method can not solve the inverse kinematics solution of the mechanical arm of the general structure, a high-precision real-time solution of inverse kinematics solution without anti-trigonometry which is suitable for any structure is studied. The solution is based on an improved gravitational particle swarm optimization algorithm (PSOGSA). The accuracy, rapidity and uniqueness of the solution are verified by simulation. Finally, in the calibration of tool coordinate system, aiming at the difficulty of calibrating manipulator with tools, a new fast calibration method is studied on the basis of multi-point and multi-attitude estimation algorithm, and the mechanism of error judgment is added. The correctness of the proposed algorithm is verified by experiments. (2) Motion planning of manipulator: on the basis of summarizing the general form of motion planning, the path planning of automatic obstacle avoidance by artificial potential field method is discussed. A simple obstacle avoidance simulation is carried out. At the same time, a joint trajectory planning method based on the interpolation of 5 ~ 3 ~ 5 spline curves is studied. This method can guarantee continuous acceleration and zero acceleration under the premise that velocity and acceleration can be continuously derivable. It's better than conventional methods to suppress the vibration of the manipulator, The effectiveness of the proposed method is verified by Matlab simulation and Denso manipulator platform. (3) trajectory tracking control of the manipulator: by simplifying the six-axis dynamic model of the Puma manipulator, the front triaxial model of the post-triaxial locking is obtained. On the basis of summarizing and analyzing the common methods of joint expected trajectory generation, the general structure of manipulator joint trajectory tracking control is obtained. At the same time, the PD,-based gravity compensation PD, based on the calculated moment compensation of the joint trajectory tracking control method PD, on the basis of which the time-varying PD parameters of the calculated moment neural network compensation control method is studied. The comprehensive control effect is improved effectively.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前10条

1 王淑青;王亚洲;许琛;潘健;;改进粒子群算法在机器人位置逆解上的应用[J];湖北工业大学学报;2017年01期

2 钟斌;;不确定关节机器人模型的神经网络补偿自适应控制[J];机械科学与技术;2017年03期

3 赵皓;刘满禄;张华;;基于三次非均匀B样条的6DOF机械臂轨迹规划[J];机器人技术与应用;2016年06期

4 张道德;徐波;;机器人多段插值轨迹规划研究与分析[J];湖北工业大学学报;2016年05期

5 夏正亚;洪亮;;基于多项式拟合插值函数的码垛机器人轨迹规划[J];山东科学;2016年05期

6 倪天伟;江红;林金珠;;基于改进人工势场法的移动机器人避障路径规划算法[J];常州大学学报(自然科学版);2016年05期

7 张云峰;马振书;孙华刚;陆继山;;基于改进快速扩展随机树的机械臂路径规划[J];火力与指挥控制;2016年05期

8 李光;符浩;;无模型机械臂BP神经网络状态观测及反演跟踪控制[J];中国机械工程;2016年07期

9 陈鹏;李洪谊;;FS-SEA柔性臂改进的反馈计算力矩控制方法[J];载人航天;2016年02期

10 齐飞;平雪良;刘洁;蒋毅;;关于工业机器人标定方法的研究[J];机床与液压;2015年21期

相关硕士学位论文 前10条

1 何婷婷;基于免疫多目标的六自由度机械臂轨迹规划[D];宁波大学;2015年

2 杜媛媛;基于迭代预测控制的机械臂轨迹跟踪的研究[D];浙江工业大学;2014年

3 张翠;基于RBF神经网络的机械臂运动控制算法及应用研究[D];兰州交通大学;2014年

4 张秀林;基于遗传算法的机械臂时间最优轨迹规划[D];兰州理工大学;2014年

5 庞飞;工业机器人二次最优轨迹规划算法研究[D];东北大学;2014年

6 李小倩;基于滑模的刚性机械臂有限时间轨迹跟踪控制研究[D];东北大学;2013年

7 兰文宝;基于PMAC的工业机器人控制系统研究与实现[D];哈尔滨工程大学;2013年

8 胡传俊;神经网络在机械手逆解求解中的应用[D];湘潭大学;2011年

9 梁飞;基于虚拟现实技术的六自由度机械臂视景仿真与碰撞检测系统[D];西华大学;2011年

10 马培羽;六自由度机械臂避障路径规划研究[D];华南理工大学;2010年



本文编号:2467238

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2467238.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户83b4f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com