二维传感器材料的合成及化学成分空间结构分布调制
[Abstract]:Because of the zero band gap, the application of graphene has been greatly restricted in the field of electron and photoelectron. The two-dimensional transition metal two sulfur compound (2D-TMDs), represented by single layer Mo S_2, has non zero band gap, which has aroused great interest. The two-dimensional semiconductor material represented by 2D-TMDs has the ultra thin, flexible and semiconductor properties. The rich exciton dynamics, valley polarization, high specific surface and low cost have important applications in the field of new generation of sensors. In order to fully develop the potential applications of these two dimensional semiconductor materials in the field of electronic and photoelectrons and the new sensor field based on two dimensional electrons and photoelectrons. The composition, structure, and electronic properties and the spatial distribution of these two dimensional atomic crystals are precisely modulated. The contents of this article include the following points: (1) we first synthesized the basic 2D-TMDs, based on the strategy of using the transverse heteroepitaxy and in situ change of reactant, and the two dimensional semiconductor crosswise was grown at the international rate. Heterojunction, the two-dimensional WS_2-WSe_2, Mo S_2-Mo Se_2 transverse heterojunction was obtained. The heterojunction in the optical microscope and the atomic force microscopy (AFM) presented the regular triangular shape. The thickness is uniform and the surface is smooth. The sample is a single layer, double layer or less layer. Raman and fluorescence studies show the modulation of different two-dimensional semiconductors on the spatial distribution. Different two-dimensional semiconductors (such as WS_2 and WSe_2) have no obvious overlap and gap at the optical resolution limit. Different two-dimensional semiconductors in the heterojunction are seamlessly connected. Transmission electron microscopy and electron diffraction studies show heterogeneous single crystal structures. The study of the distribution of elements in the X ray spectrometer shows that the composition of the heterojunction is realized. Modulation of spatial distribution. Electronic, optoelectronic devices, including diodes and triode, are prepared by atomic thin WSe_2-WS_2 heterojunction. The devices show excellent rectifying behavior and photocurrent generation behavior. We also point out the possible use of two dimensional semiconductor transverse heterojunction in the sensor. On the basis of the prepared transverse heterojunction, it is proposed. The concept of "interface" to "boundary" changes in two-dimensional heterojunction. (2) in order to fully develop the potential application of 2D-TMDs and other two-dimensional semiconductors in the field of sensors, it is necessary to accurately control the band gap and electronic properties of these two-dimensional semiconductors. We first synthesized two dimensional WS_ (2x) Se_ (2-2x) semiconductor alloy nanoscale and controlled the alloy. The micro Raman study shows that the frequency of the Raman resonance varies continuously with the variation of the composition. The micro fluorescence study shows that the position of the fluorescence peak is controlled by the continuous variation of the composition, and the band gap of the alloy nanoscale is regulated. The transmission electron microscope studies confirm that the alloy nanoscale is homogeneous single crystal structure with good crystalline quality. The electronic properties of the two-dimensional WS_ (2x) Se_ (2-2x) semiconductor nanoscale, including the carrier type and concentration, the valve voltage, and the carrier mobility with the chemical composition of the alloy continuously change. This research is designed to design two-dimensional electricity with controllable response and device characteristics. Sub, optoelectronic devices and a key step in the sensor process based on two-dimensional electron and photoelectrons. (3) we carried out high temperature P steam treatment to 2D-WS_2 to achieve the control of the electronic performance of 2D-WS_2. The optical microscope shows that P doping does not change the appearance of nanoscale, and AFM shows that our samples are single layer and less layer. The micro Raman study shows that P doping does not change the phonon structure of the sample basically. The micro fluorescence study shows that the doping of P has changed the electronic structure of the nanoscale. The study of electrical properties shows that the doping of P has changed the semiconductor properties of the nanoscale, and the doped 2D-WS_2 is n, bipolar and P type semiconductor. The research results laid the foundation for the small, flexible, integrated, intelligent, and networked sensors based on the two-dimensional semiconductor, which successfully controlled the composition, structure, electronic properties and spatial distribution of two dimensional semiconductors, and provided an important two-dimensional electron to achieve atomic thin. The material platform of Optoelectronics and sensors provides a solid foundation for the design of the new generation of integrated circuits and highly flexible and highly sensitive sensors.
【学位授予单位】:湖南大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP212;TN304
【相似文献】
相关期刊论文 前10条
1 郑茳,许居衍;硅异质结和赝异质结双极器件研究进展[J];电子学报;1995年10期
2 郑宜钧;硅基异质结构的研究[J];电子科技导报;1996年09期
3 范希武;与Ⅱ—Ⅵ族有关的异质结的场致发光[J];国外信息显示;1973年Z1期
4 单淑萍;蔡丽清;;异质结领域发展近况[J];科教文汇(上旬刊);2009年12期
5 M .Jedlicka;F.Schauer;林钧天;;摄象管用异质结构靶的物理模型[J];光电子学技术;1987年03期
6 郑东;;几种微波毫米波固态器件的动向[J];电波科学学报;1991年Z1期
7 王华,于军,董小敏,王耘波,周文利,赵建洪,周东祥;Au/PZT/BIT/p-Si异质结的制备与性能研究[J];物理学报;2001年05期
8 李玉兰;;Ga-Al-As激光器的进展[J];稀有金属;1978年01期
9 詹仪;张会云;尚廷义;张玉萍;郑义;;异质结构对多通道滤波器禁带的展宽(英文)[J];量子光学学报;2006年01期
10 安丽萍;邓新华;;基于单负材料的光子晶体异质结构全方位滤波器[J];半导体光电;2010年03期
相关会议论文 前10条
1 张闯;闫永丽;赵永生;姚建年;;一维有机异质结构的制备和发光性质调控[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
2 杨金虎;彭成信;左元慧;祖连海;秦瑶;;纳米复合/异质结构设计及其能量存储与转化研究[A];中国化学会第29届学术年会摘要集——第37分会:能源纳米科学与技术[C];2014年
3 邓新华;刘念华;袁吉仁;;一维单负材料光子晶体异质结构的隧穿模[A];2007年全国博士生学术论坛(材料科学与工程学科)论文集[C];2007年
4 薛飞;孟子晖;齐丰莲;王丰彦;薛敏;;二维胶体晶体异质结构[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年
5 秦瑶;祖连海;周燕洁;杨金虎;;准单晶介孔ZnO-Au异质结构的一步法合成及传感应用[A];中国化学会第29届学术年会摘要集——第04分会:纳米生物传感新方法[C];2014年
6 钟明亚;王爽;单桂晔;王国瑞;刘益春;;超声法制备ZnO/Au纳米异质结构及其光学性质的研究[A];第11届全国发光学学术会议论文摘要集[C];2007年
7 李忠辉;李亮;董逊;张岚;姜文海;;3英寸Si基AlGaN/GaN/异质结材料生长[A];第十一届全国MOCVD学术会议论文集[C];2010年
8 张波;丛琴;贺笑春;高明军;马兴法;李光;;低维异质结构功能材料及其有机-无机纳米复合材料的表面、界面特性研究[A];中国化学会第29届学术年会摘要集——第01分会:表面物理化学[C];2014年
9 刘江涛;周云松;王福合;顾本源;;对称性对2D光子晶体异质结导波模的影响[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
10 王海波;闫东航;;结晶性有机异质结器件[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
相关博士学位论文 前10条
1 甄延忠;Mo-O基半导体材料优化制备及光催化氧化脱硫性能的研究[D];西北大学;2015年
2 刘尔富;二维材料及其异质结构的电子输运与器件研究[D];南京大学;2015年
3 朱国兴;基于氧族化合物纳米复合结构的构筑、机理及性能研究[D];南京大学;2010年
4 邹欣伟;Cu_2O基纳米异质结的制备及光催化、光电和气敏性能[D];西北工业大学;2015年
5 石遂兴;Ⅲ-Ⅴ族窄带隙半导体纳米线及纳米线异质结的生长与物性研究[D];中国科学院研究生院(上海技术物理研究所);2015年
6 赵洋;InN薄膜的MBE法生长及其NiO组合异质结器件研究[D];吉林大学;2016年
7 王鹏;Ⅱ-Ⅵ族化合物/TiO_2纳米棒异质结构的制备及其光电化学性质的研究[D];吉林大学;2016年
8 宋昌盛;纳米异质结电子结构特性的第一性原理研究[D];华东师范大学;2016年
9 沈玄;多铁性钙钛矿异质结构的电磁性能和电子显微研究[D];南京大学;2016年
10 杜虹;Cd_(1-x)Zn_xS基纳米异质结光催化剂的合成及其制氢性能研究[D];中国科学技术大学;2016年
相关硕士学位论文 前10条
1 王雅文;近紫外宽带激发LED用荧光材料的研究[D];上海师范大学;2015年
2 范志强;GaN/Si-NPA双纳米异质结的制备及其电学特性研究[D];郑州大学;2015年
3 周璇;g-C_3N_4/Bi_2S_3和Ag@C异质结构的合成及应用[D];苏州大学;2015年
4 杨薇;FeVO_4异质结光催化剂的制备改性及光电性能的研究[D];陕西科技大学;2015年
5 李文婷;部分铋系光催化剂的改性、表征以及光催化性能研究[D];福建师范大学;2015年
6 徐丹丹;多级异质结构MOFs材料的控制生长及性能研究[D];福建师范大学;2015年
7 袁建;二维Bi_2Te_(3-x)Se_x及其与石墨烯的异质结材料制备与表征[D];苏州大学;2015年
8 赵飞;一维铟基化合物异质结构纳米材料的静电纺丝合成及光催化性质研究[D];齐鲁工业大学;2015年
9 张永辉;BiOX(I、Br、Cl)的合成、表征与改性[D];齐鲁工业大学;2015年
10 孙琦;功能化magadiite基异质结构的制备及性能研究[D];北京化工大学;2015年
,本文编号:2134865
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2134865.html