基于局部特征的遥感图像目标检测方法研究
[Abstract]:In recent years, with the development of remote sensing satellite technology, the application range of remote sensing images in military and civil fields has been gradually expanded. The research on remote sensing image target detection methods has attracted more and more attention from scholars in various countries. In general, people are concerned only with a small part of the entire image or the whole segment of the visual frequency, and use the global features in a single way. The target detection has been limited in practical application, which has some limitations, and the advantage of the local feature on the performance of information description provides an effective way for remote sensing target detection under complex background. In order to improve the efficiency and reliability of remote sensing information processing, the military reconnaissance and information collection will be enhanced. In this paper, the ability of the collection, focusing on the detection and identification of the mass target, the array target and the port target in remote sensing images, takes the oil tank, aircraft and ship as the specific research object, and studies the above objectives systematically with the characteristics of the target in the human visual perception system and the spatial relationship of its local characteristics. On the basis of this, the detection and recognition method for different types of objects in remote sensing images is proposed, and the efficiency and adaptability of the remote sensing target detection and recognition system are improved. The research results are obtained. This paper mainly studies the typical target detection method of remote sensing images based on the visual local features. The following work is as follows: 1. in view of the low accuracy of the target edge detection results of remote sensing images, then the image matching, target tracking and other image processing analysis precision problems. The thesis first analyzes the human visual physiological structure and the characteristics of remote sensing targets, systematically studies the interpretation process of remote sensing image, and the factors, methods and development of the interpretation. The trend is summarized and summarized, which lays a solid theoretical foundation for the research of remote sensing target detection and recognition in the full text. Then a method of detection of target edge features of remote sensing image based on visual perception is proposed. The visual perception and remote sensing targets are excavated through the theoretical study and analysis of the characteristics of the visual perception system. The experimental verification of the effectiveness of the high and low threshold method based on visual perception to the detection of edge features of remote sensing images is verified by experiments, and by comparing with other algorithms, it is proved that this method can effectively improve the accuracy of the descriptors of each edge feature descriptor.2. to increase the resolution of remote sensing images. In addition, the image content tends to be complicated, the target is affected by the shadow interference and the recognition rate is reduced, and the accuracy of the target detection is faced with the great difficulty and challenge. A new method of mass target detection based on the characteristic of the circle is proposed, which focuses on the detection and recognition of the target of the remote sensing image oil tank. The experimental results show that this paper is proposed in this paper. Compared with other methods, the accuracy of the detection results has been effectively improved, and the location of the oil storage area can be realized quickly by the detection results. The algorithm is suitable for the remote sensing image.3. of different resolution. The target of the aircraft is shadowed by its own shadow and building occlusion in the actual remote sensing image. As well as the influence of ground object interference, the shadow outline of the aircraft target is mistaken for the aircraft target, which reduces the accuracy of the detection and leads to the reduction of the accuracy of the actual aircraft target location and feature extraction. In this paper, an array target detection and recognition method based on the invariant features is proposed. The detection and recognition of the aircraft target in the airport background is studied. The experimental results show that the implementation of this method is simple. Compared with other detection methods, it has good robustness to the interference effect of the target background, and the computation is small. The accuracy of the detection results can effectively improve the.4. target ship's target in remote sensing images. The gray and texture features of the standard are close to the port. The traditional detection method is not easy to separate the target from the port, and the detection accuracy is low. In this paper, a method of ship detection on the starboard of remote sensing images based on local significant features is proposed. In the environment, the effect of target detection is better, and the algorithm is not affected by the berthing position and shadow of the ship. The target recognition rate is higher and the robustness is stronger.
【学位授予单位】:长春理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP751
【相似文献】
相关期刊论文 前10条
1 张仁华;《遥感图像应用处理与分析》评介[J];地理研究;2004年04期
2 李伟;;遥感图像中的道路提取[J];自动化博览;2006年05期
3 李传龙;李颖;马龙;;一种新的遥感图像海岸线检测方法[J];计算机仿真;2010年08期
4 张学良;肖鹏峰;冯学智;;基于图像内容层次表征的遥感图像分割方法[J];中国图象图形学报;2012年01期
5 秦其明;遥感图像自动解译面临的问题与解决的途径[J];测绘科学;2000年02期
6 陈小琪;现代计算机印前制版技术在遥感图像印制中的应用研究——以《长江经济带可持续发展地图集》为例[J];地球信息科学;2000年02期
7 邓湘金,彭海良;一种基于遥感图像的机场检测方法[J];测试技术学报;2002年02期
8 余杰千,方涛,陈雍业;一种有效的遥感图像无缝分割方法[J];计算机应用;2003年12期
9 吴为禄;遥感图像中的云层消除处理[J];铁路航测;2003年01期
10 于辉,徐军;彩色遥感图像目标提取方法研究[J];遥感技术与应用;2003年06期
相关会议论文 前10条
1 张凤春;董增寿;刘明君;;基于局部方差均衡的遥感图像增强方法[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年
2 邓冰;林宗坚;彭晓东;;遥感图像信息度量的原理与方法[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
3 江兴方;江鸿;何贤强;;遥感图像两种半自动拼接方法的研究[A];全国农业遥感技术研讨会论文集[C];2009年
4 罗睿;张永生;范永弘;邓雪清;;遥感图像基于内容查询的研究与实践[A];第十三届全国遥感技术学术交流会论文摘要集[C];2001年
5 陈东;庞怡杰;黄勇杰;;大倾斜航空遥感图像快速自动镶嵌技术[A];图像 仿真 信息技术——第二届联合学术会议论文集[C];2002年
6 黄勇杰;王树国;刘俊义;陈东;;遥感图像去云算法研究[A];首届信息获取与处理学术会议论文集[C];2003年
7 谢建春;赵荣椿;;遥感图像中的军用机场识别算法研究[A];信号与信息处理技术第三届信号与信息处理全国联合学术会议论文集[C];2004年
8 陈姚;王金亮;李石华;;遥感图像中云层遮挡影响消除处理方法研究述评[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年
9 张磊;朱磊;;遥感图像中直线目标的检测[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年
10 邱磊;李国辉;衡祥安;;一种基于交互学习的遥感图像挖掘方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
相关重要报纸文章 前5条
1 蒋建科邋孙宏金 陈树琛;传回清晰遥感图像[N];人民日报;2008年
2 记者 郑千里;北京地区有了航空遥感图像[N];科技日报;2000年
3 本报通讯员;煤航遥感院获美国快鸟遥感图像西部代理权[N];中煤地质报;2005年
4 王石;印度通过“快鸟”影像发现古墓地[N];中国测绘报;2010年
5 记者 马彦平 张桂敏;澳大利亚钾矿钻探启动[N];农资导报;2011年
相关博士学位论文 前10条
1 李轩;基于局部特征的遥感图像目标检测方法研究[D];长春理工大学;2016年
2 朱光;基于遥感图像的交通道路目标识别方法研究[D];吉林大学;2015年
3 祁友杰;基于SoC技术的遥感图像快速匹配方法研究[D];东南大学;2016年
4 霍丽君;基于变分的遥感图像恢复算法研究[D];中国科学院长春光学精密机械与物理研究所;2017年
5 陈彦彤;基于局部不变特征的遥感图像星上目标识别技术研究[D];中国科学院长春光学精密机械与物理研究所;2017年
6 江兴方;遥感图像去云方法的研究及其应用[D];南京理工大学;2007年
7 滕鑫鹏;遥感图像道路提取研究[D];江苏大学;2014年
8 刘春红;超光谱遥感图像降维及分类方法研究[D];哈尔滨工程大学;2005年
9 刘哲;基于信息融合的遥感图像处理方法研究[D];西北工业大学;2002年
10 强赞霞;遥感图像的融合及应用[D];华中科技大学;2005年
相关硕士学位论文 前10条
1 刘雪莹;基于深度学习的遥感图像检索方法研究[D];中国科学院大学(中国科学院遥感与数字地球研究所);2017年
2 邱磊;基于内容的遥感图像挖掘方法研究[D];国防科学技术大学;2005年
3 陈浩;高分辨遥感图像灾区建筑检测[D];南京理工大学;2015年
4 朱然;大数据量复杂背景下桥梁水坝目标快速识别[D];电子科技大学;2015年
5 王静静;基于NSCT和Shearlet变换的遥感图像增强研究[D];新疆大学;2014年
6 柴宏磊;基于知识的遥感图像港口目标识别[D];电子科技大学;2015年
7 冯一鸣;基于遥感图像中港口目标的分割算法研究与实现[D];西安电子科技大学;2014年
8 吴云坤;遥感图像变化检测技术研究[D];国防科学技术大学;2013年
9 王旭;无参考遥感图像质量综合评价算法研究[D];西安电子科技大学;2015年
10 宋玉梅;基于遥感图像的内河航道识别研究[D];重庆交通大学;2015年
,本文编号:2161118
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2161118.html