量子点和金簇纳米传感器制备及在药物检测中的应用研究
[Abstract]:Nano-sensors are widely used in the fields of chemistry, food science, clinical diagnosis, environment and medicine because of their excellent optical properties and sensitivity. The selection of nano-materials is very important to the sensitivity, specificity and stability of the sensors. New nano-materials (quantum dots and Ginna) are used. Combining with sensors, nano-sensors with high specificity and sensitivity can be constructed for rapid detection of pesticide residues in environment, agricultural products and traditional Chinese medicines, and sensitive monitoring of clinical important drug molecules. It can not only promote the rapid development of nanotechnology in the history of human science and technology, but also open up new ideas for researchers. At present, there are many kinds of detection methods for pesticide paraquat, anticoagulant heparin, trypsin and folic acid, such as chromatography, electrochemical method and enzyme-linked immunosorbent assay, but these methods are easy to be interfered by other components of the actual sample, difficult to extract and analyze, or a variety of detection steps, detection time, etc. With the continuous improvement of human living standards and the deepening of scientific research, people gradually realize the importance of environmental safety, food safety and clinical drug safety to human health, so researchers urgently need to study. Preparation of nano-sensors with simple operation, rapid detection, low cost and good sensitivity for rapid detection of pesticide molecules, clinical important drug molecules and important protein molecules closely related to human health in order to meet the environmental, food safety assessment and clinical drug safety guidelines, thus for China's agricultural products and pharmaceutical industry The rapid and safe development and the trend of internationalization have laid a good foundation for clinical medicine and rapid diagnosis of some diseases, and also provide a reliable evaluation index for human health and quality of life index. Considering the environmental problems, pesticide residues in agricultural products and raw medicines, clinical drug requirements and testing, a series of fluorescent nano-sensors were designed and assembled for the rapid detection and analysis of pesticide residues in environment, agricultural products and medicinal plants. Paraquat, clinical anticoagulants heparin, folic acid, and trypsin provide new ideas for the establishment of pesticide residue detection and clinical drug monitoring platforms. The following major advances have been made in this paper: In the first chapter, we reviewed the preparation of quantum dots and metal nanoclusters, and their applications in environmental and agricultural pollutants, protein analysis, bioimaging and other research areas. In the second chapter, in order to achieve rapid detection and screening of paraquat in the environment, agricultural products and medicinal plant samples, we use Cd S quantum dots with good optical properties as fluorescent nanomaterials to establish a simple and sensitive sensor for the detection of paraquat. The water-soluble Cd S quantum dots can be synthesized rapidly in 15 minutes by optimizing the synthesis conditions with glutathione as template and protectant. According to the characteristics of paraquat as cationic salt, the fluorescence of GSH-Cd S quantum dots can be quenched efficiently by electron transfer, and the fluorescence intensity of environmental and agricultural samples can be changed according to the fluorescence intensity. This method can be used to detect paraquat in the range of 0.025-1.50 UG m L-1. Compared with the traditional method, it does not need expensive enzymes or antibodies and other reagents. The cost is lower and the detection limit is lower (0.01 UG m L-1). This method is suitable for environment, agricultural products and Chinese herbal medicines. In Chapter 3, a novel fluorescent "quenching-recovery" nanosensor was constructed to effectively avoid the influence of protein and ion in blood on the real-time monitoring and detection of anticoagulant heparin. In this chapter, bovine serum albumin (BSA) was used as both a template and a protectant to prepare water-soluble BSA-Cd S quantum dots. The quantum dots interacted with gold nanoparticles Au NPs, resulting in significant quenching of BSA-Cd S fluorescence. Protamine could induce agglomeration of gold nanoparticles (Au NPs), resulting in absorption of Au NPs. Because heparin and protamine bind preferentially through electrostatic interaction, protamine is far away from gold nanoparticles, and the fluorescence internal filtration is strengthened, which leads to the fluorescence signal change again, so as to detect the content of heparin, and on this basis, the quantitative detection of the real protamine is carried out. Compared with the traditional method, this method can effectively shield the interference of common proteins, amino acids and cations in blood and detect the content of anticoagulant heparin rapidly. This method has high sensitivity. The detection limit is 10-300 ng m L-1 and the minimum detection limit is 2.2 ng m L-1. In the fourth chapter, we constructed a fluorescent gold cluster (GSH-Au NCs) to detect the trypsin content in human urine samples and provide a basis for the diagnosis of pancreatic diseases. A simple, sensitive and unmarked fluorescent nanosensor was developed for the rapid detection of trypsin. In this chapter, the fluorescence of cytochrome C was effectively quenched by contact with gold nanoclusters due to the strong electron absorption of cytochrome C. When trypsin was present in the system, trypsin could catalyze the hydrolysis of cytochrome. C (Cyt C), resulting in fluorescence recovery. Therefore, the fluorescence intensity of the system changes to quickly test the activity of trypsin. This method has good selectivity and anti-interference ability, and fast and simple, detection linear range is 0.001-0.2 mg m L-1, the minimum detection limit is 0.3 UG m L-1, can be used for the actual urine samples of trypsin content. In the fifth chapter, we constructed a novel, selective and label-free gold nanoparticles (cyst-Au NPs) and gold nanoclusters (BSA-Au NCs) for the safe and effective detection of folic acid, an important substance affecting fetal development. Folic acid nanosensors. Based on the principle that gold nanoparticles quench the fluorescence of gold clusters by surface plasmon resonance energy transfer, folic acid can induce the agglomeration of gold nanoparticles and cause the red shift of their ultraviolet absorption peaks, resulting in the formation of gold nanoparticles (cyst-Au NPs) and gold nanoclusters (BSA-Au NCs). This scheme not only has good selectivity, but also has the function of absorbance and fluorescence dual-signal output. On the one hand, it can detect folic acid semi-quantitatively by changing the color of the solution. More importantly, it can detect folic acid semi-quantitatively by changing the color of the solution. The fluorescence method can accurately determine the content of folic acid in blood. The linear range of the method is 0.11-2.27 micromol L-1 and the minimum detection limit is 0.065 micromol L-1. In this paper, a series of important quantum dots or gold cluster nano-sensors for identifying different target drugs are designed and fabricated. The application of this kind of sensor will shorten the detection time, improve the detection sensitivity, reduce the detection cost and achieve the target in complex samples. The detection of the specificity of the substance has potential application value, which not only provides a feasible scheme and reliable basis for the rapid and sensitive detection of clinical drugs and proteins, but also provides a new idea and direction for the further and extensive study of the multiple functions of new nanomaterials.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP212.3;R927
【相似文献】
相关期刊论文 前10条
1 叶鹏;宋金春;;量子点在药学领域的应用及前景[J];中国医院药学杂志;2008年23期
2 谭君;祝连彩;;量子点在新药开发中的应用[J];生命的化学;2008年06期
3 李鸿梅,房学迅,陈娟娟,李惟,王丽萍;量子点荧光标记应用于生物学的研究进展[J];国外医学.生物医学工程分册;2004年05期
4 徐萌,陈新明;量子点在肿瘤医学中的应用[J];国外医学(肿瘤学分册);2005年09期
5 李琨;焦嫦亮;尹翔;王顺伟;王吉伟;张阳德;;量子点荧光标记及其应用[J];现代临床医学生物工程学杂志;2006年04期
6 杨玲玲;;量子点及其在生物光子学中的应用[J];现代医用影像学;2007年01期
7 张毅;;量子点在生物和医学中的应用进展[J];石油化工应用;2008年02期
8 郑少鸾;朱立新;许小亮;王本忠;;量子点的荧光特性在生物标记成像中的应用及展望[J];现代生物医学进展;2013年06期
9 李丹;严拯宇;;量子点的制备及其在生物分析中的应用[J];药物生物技术;2007年05期
10 崔庆新;赵学武;王磊;姜玮;;新型荧光探针量子点在生命科学和药学中的应用[J];中国药学杂志;2008年01期
相关会议论文 前10条
1 胡德红;武红敏;梁建功;韩鹤友;;量子点与蛋白质相互作用研究[A];第五届全国化学生物学学术会议论文摘要集[C];2007年
2 宋涛;逯超亮;宫晓群;杨秋花;李云红;常津;;量子点荧光编码微球的制备[A];天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集[C];2010年
3 杨久敏;宫晓群;张琦;宋涛;刘铁根;李迎新;常津;;小波变换在量子点编码识别中的应用[A];天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集[C];2010年
4 李佳涵;葛玉舒;田方方;樊婷;袁莲;刘义;;微量热研究量子点对线粒体代谢的影响[A];中国化学会第十五届全国化学热力学和热分析学术会议论文摘要[C];2010年
5 何治柯;;小粒经近红外低毒水溶性量子点的合成及应用研究[A];中国化学会第十届全国发光分析学术研讨会论文集[C];2011年
6 贾金锋;;全同金属量子点的生长与研究[A];2001年纳米和表面科学与技术全国会议论文摘要集[C];2001年
7 张友林;曾庆辉;孔祥贵;;用于在体高灵敏检测的量子点发光光纤生物传感器[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(上册)[C];2007年
8 王金嫒;王琛;付国;刘力;王桂英;;量子点的三维取向探测[A];2006年全国强场激光物理会议论文集[C];2006年
9 张家雨;崔一平;王志兵;;胶体量子点的电致发光研究[A];第十七届十三省(市)光学学术年会暨“五省一市光学联合年会”论文集[C];2008年
10 原凤英;蒋最敏;陆f ;;锗硅双层量子点耦合效应的研究[A];第十六届全国半导体物理学术会议论文摘要集[C];2007年
相关重要报纸文章 前10条
1 冯卫东;美研究可高效阻断蛋白生成的量子点技术[N];科技日报;2008年
2 记者 常丽君;韩国造出全彩色量子点显示屏[N];科技日报;2011年
3 记者 曲照贵;天大首创零污染量子点合成工艺[N];中国化工报;2013年
4 刘牧洋;我国量子点研究获新突破[N];光明日报;2003年
5 王全楚;“量子点”荧光标记初露端倪[N];健康报;2005年
6 刘霞;科学实验发现:量子点不是点[N];科技日报;2010年
7 记者 刘霞;量子点显示屏或将成主流[N];科技日报;2010年
8 刘霞;胶体量子点太阳能电池转化效率创纪录[N];科技日报;2011年
9 本报记者 于欢;纳米技术全面升级LED[N];中国能源报;2010年
10 记者马艳红;中科院化学所成功制备量子点荧光微球[N];中国医药报;2005年
相关博士学位论文 前10条
1 王立民;量子点分子及量子点团簇的电子结构[D];北京师范大学;2002年
2 石星波;单个量子点的光学性质研究及其在超高分辨率定位上的应用[D];湖南大学;2012年
3 王解兵;Ⅱ-Ⅵ族油溶性量子点的制备、修饰及应用研究[D];上海交通大学;2013年
4 李钒;高荧光碳量子点的制备及其应用研究[D];中国人民解放军军事医学科学院;2015年
5 周宏明;核壳型量子点的能带结构及其光学非线性[D];武汉大学;2013年
6 黄碧海;基于量子点标记的生物探针构建[D];武汉大学;2012年
7 潘佳奇;半导体ZnSe量子点和碳量子点的制备及其应用[D];兰州大学;2015年
8 卞伟;锰掺杂硫化锌量子点磷光探针研究及分析应用[D];山西大学;2015年
9 胡思怡;基于微流控技术的功能型量子点的合成及应用[D];长春理工大学;2015年
10 梁瑞政;光功能客体/LDHs插层复合材料的构筑及其性能研究[D];北京化工大学;2015年
相关硕士学位论文 前10条
1 尹芳蕊;纳米颗粒—量子点经嗅觉通路进入中枢神经系统的实验研究[D];内蒙古科技大学包头医学院;2008年
2 许智祥;荧光量子点的制备及应用研究[D];华中科技大学;2007年
3 李秀清;量子点的不同修饰方法对其与牛血清白蛋白的作用的影响[D];华中科技大学;2007年
4 华晓锋;量子点与生物分子的偶联及其应用[D];华中科技大学;2006年
5 李玉丹;单电子隧穿耦合量子点的输运和光学性质[D];山西大学;2011年
6 何至青;水溶性量子点的制备与性能研究[D];武汉理工大学;2012年
7 陈清爱;基于量子点的金属离子检测和碳点的制备及其发光研究[D];福建农林大学;2012年
8 卢鹏;核分析技术在水溶性氧化锌量子点吸收中的应用[D];复旦大学;2012年
9 张翼飞;锗硅单量子点的耦合和瞬态电学性质研究[D];复旦大学;2010年
10 赵潇;一种纳米级碳量子点的合成、修饰、表征及生物学评价[D];华东师范大学;2015年
,本文编号:2206430
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2206430.html