时空特征提取方法研究
[Abstract]:Video content recognition is an important issue in computer vision, and related research can be used in intelligent video surveillance, human-computer interaction, video retrieval and other fields. Video feature expression is very important for video content recognition. It is difficult to extract good video features. In recent years, related research has made some progress, but there are still many difficulties, which can not be well applied to actual scenes. In this paper, the space-time feature extraction in video content recognition is studied from the aspects of recognition accuracy and recognition speed. The main work of this paper is as follows. 1. Slow feature analysis (SFA) extracts slowly changing signals from fast changing signals. The primary visual cortex provides information for ventral and dorsal pathways, respectively, for processing appearance and motion information. However, SFA is only used to extract slowly varying information in local feature extraction, which mainly represents static information. In order to make better use of temporal information, this paper extends SFA to time variance analysis (TVA). TVA learns a linear mapping function, which maps the original temporal information to the characteristic components with different temporal variations. Local receptive field is used to extract local features by convolution and pooling. In this paper, the method of feature extraction based on TVA is tested on four behavioral recognition databases. The experimental results show that both slow and fast features extracted by TVA can be effectively expressed and can be transmitted by comparison. Dynamic texture exists widely in different shapes, such as flame, smoke, traffic flow and so on. Because of the complex changes of dynamic texture video sequence, dynamic texture recognition becomes a challenging problem. This paper presents a dynamic texture recognition method based on slow feature analysis. Slow feature analysis can learn invariant features from complex dynamic textures. However, complex temporal variations require high-level semantic information to express features to achieve time invariance, which is difficult to be learned directly from high-dimensional video by slow feature analysis. We propose a manifold-based slow feature. MR-SFA: manifold regularized SFA (MR-SFA) learns a low semantic level local feature to describe a complex dynamic texture. MR-SFA constraints with similar initial state features also have similar changes in time. This method can learn a partially predictable slow change feature to cope with the complexity of dynamic texture. Experiments on dynamic texture recognition and scene recognition databases demonstrate the effectiveness of MR-SFA. 3. Traditional video feature extraction methods are too time-efficient for real-time or large-scale applications. In traditional compressed video, DCT (discrete cosine transform) coefficients encode the residual information between consecutive frames in the video, which is not available in the block directed by the motion vector. We propose a set of features called residual edge histograms to extract the features of the video using different parts of the DCT coefficients. On the other hand, we use the compression domain information of the depth map video, including DWT (discrete wavelet transform) coefficients and breakpoints. In this paper, a series of features for depth map video are extracted by using the two kinds of compressed domain information. The above feature extraction methods are validated in the behavior recognition database. The experimental results show that the proposed method is better than the traditional method. In summary, on the one hand, based on the analysis of video spatiotemporal information, this paper proposes a new spatiotemporal local feature extraction method to achieve better recognition accuracy; on the other hand, this paper starts from compressed domain information and directly from compressed video information. Spatio-temporal feature extraction in the message greatly improves the recognition speed while ensuring good recognition accuracy.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 马少华,高峰,李敏,吴成东;神经网络分类器的特征提取和优选[J];基础自动化;2000年06期
2 管聪慧,宣国荣;多类问题中的特征提取[J];计算机工程;2002年01期
3 胡威;李建华;陈波;;入侵检测建模过程中特征提取最优化评估[J];计算机工程;2006年12期
4 朱玉莲;陈松灿;赵国安;;推广的矩阵模式特征提取方法及其在人脸识别中的应用[J];小型微型计算机系统;2007年04期
5 赵振勇;王保华;王力;崔磊;;人脸图像的特征提取[J];计算机技术与发展;2007年05期
6 冯海亮;王丽;李见为;;一种新的用于人脸识别的特征提取方法[J];计算机科学;2009年06期
7 朱笑荣;杨德运;;基于入侵检测的特征提取方法[J];计算机应用与软件;2010年06期
8 王菲;白洁;;一种基于非线性特征提取的被动声纳目标识别方法研究[J];软件导刊;2010年05期
9 陈伟;瞿晓;葛丁飞;;主观引导特征提取法在光谱识别中的应用[J];科技通报;2011年04期
10 王华,李介谷;人脸斜视图象的特征提取与恢复[J];上海交通大学学报;1997年01期
相关会议论文 前10条
1 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年
2 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
3 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年
4 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年
5 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年
6 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
7 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年
9 刘红;陈光,
本文编号:2224105
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2224105.html