最优映射计算与网格生成

发布时间:2018-11-03 13:16
【摘要】:在科学研究、工程计算、文化娱乐中,数字几何数据扮演着越来越重要的角色。使用数学模型和算法来分析与处理数字几何数据的过程称作数字几何处理。这是一个包含计算机科学、应用数学和工程学等学科的交叉性研究课题。常见的研究内容包括模型获取、模型重建、网格生成、形状分析与理解、映射计算和几何建模等。我们的研究针对数字几何处理中的两个子课题:最优映射计算和最优网格生成。其中最优映射计算是一个重要的课题,它是许多计算机图形学应用的核心,比如网格参数化、网格变形、网格质量提高、六面体网格生成。最优网格生成是网格数据处理的基石,比如在有限元方法,对各向异性网格和六面体网格有很强的需求,因为它们能获得比各向同性网格和四面体网格更好的计算精度。最优映射计算可以作为网格生成的后处理技术,用于提高网格的质量。本文从优化的角度设计了新颖的能量函数和优化方法,将它们成功地应用到了最优网格映射计算、各向异性网格生成和多立方体结构(PolyCube)自动生成这三个课题,具体如下:一个好的映射算法需要保证无翻转、低形变和计算高效性。现有的算法不能同时保证这些特性。本文设计了一个增强的形变最小化能量(Advanced Most-Isometric ParameterizationS, AMIPS),并使用非精确块坐标轮换下降算法(inexact Block Coordinate Descent, inexact BCD)来快速地计算无翻转的最优映射。AMIPS能量函数继承了传统的形变最小化能量(Most-Isometric ParameterizationS, MIPS)的保证无翻转的性质,同时能控制最大的形变。inexact BCD优化算法能避免优化过程过早地陷入局部最小。结合AMIPS能量函数与inexact BCD优化算法,本文提高了映射的计算效率和质量。在网格参数化、二维三角形网格与三维四面体网格变形、二维与三维无网格变形、各向异性四面体和六面体网格质量提高等应用中充分体现了我们算法的优越性。但是AMIPS算法同样存在缺点:比如不能支持存在很多控制点的网格变形,而且对初始映射比较敏感。本文提出了一个组装分离网格单元的方法来计算无翻转的最优映射。我们的方法接受任意的网格映射作为输入,该输入映射可以存在众多翻转的网格单元。我们首先将网格的所有网格单元分离,保持每个网格单元上的映射是低形变的,然后通过同时优化形变和分离顶点之间的距离来计算无翻转的最优映射。由于使用了每个网格单元上的仿射变换作为优化变量,我们可以通过求解一个无约束的非线性非凸优化问题来得到最优映射。同样在平面网格参数化、网格变形等应用中体现了我们算法的鲁棒性和高效性。在几何建模、物理模拟和机械工程等应用中,各向异性网格是非常重要的。本文提出了局部凸函数三角化(Local Convex Triangulation, LCT)方法,用于生成高质量的各向异性网格。输入一个曲面,或者一个三维空间区域作为定义域,和在定义域上的已知黎曼度量场,我们将各向异性网格生成问题转化为一个函数逼近问题。在每个网格单元上构造局部凸函数,它的Hessian矩阵局部上和输入的黎曼度量一致。我,,们利用交替更新网格顶点位置和改变网格连接关系的策略来降低函数逼近误差。我们的LCT方法推广了最优Dealunay三角化(Optimal Delaunay Triangulation, ODT),可以接受一般化的黎曼度量场作为输入和适用于剧烈变化的黎曼度量场和存在尖锐特征的网格。从二维平面区域、三维空间区域和三维曲面上生成的各向异性网格来看,我们算法效率高,结果网格质量高。在物理模拟和机械工程等应用中,六面体网格往往比四面体网格有着较好的性质,比如更少的网格单元、更高的计算精度。本文通过高质量多立方体(Poly-Cube)结构来生成六面体网格。多立方体结构要求网格的表面三角形的法向和X,Y,Z轴严格对齐。之前的算法不能同时保证无翻转、低形变、奇异性可控和计算高效这四个性质。本文使用inexact BCD算法来优化表面法向光滑与对齐能量,用来驱动网格变形并自动地消除极限点,以自动生成高质量的多立方体结构。我们引入光滑函数的核宽度来控制多立方体结构的奇异性。inexact BCD算法的高效率使本文的自动化算法的效率远远高于现在最先进的算法。从多立方体映射的形变和六而体网格牛成的结果来看,我们算法的质量和效率相比于当前最先进的算法都有较大提升。
[Abstract]:Digital geometry plays an increasingly important role in scientific research, engineering calculation and cultural entertainment. The process of using mathematical models and algorithms to analyze and process digital geometry data is called digital geometry processing. This is a cross-cutting research subject, including computer science, applied mathematics and engineering. Common research contents include model acquisition, model reconstruction, grid generation, shape analysis and understanding, mapping calculation and geometric modeling. Our research is directed to two sub-topics in digital geometry: optimal mapping calculation and optimal mesh generation. The optimal mapping calculation is an important task, and it is the core of many computer graphics applications, such as mesh parameterization, mesh deformation, mesh quality enhancement and hexahedral mesh generation. Optimal grid generation is the cornerstone of grid data processing, for example, in finite element method, it has strong demand for anisotropic mesh and hexahedral mesh, because they can obtain better calculation accuracy than isotropic grid and tetrahedron grid. Optimal mapping calculations can be used as post-processing techniques for grid generation to improve the quality of the grid. In this paper, a novel energy function and optimization method are designed from the viewpoint of optimization, and they are successfully applied to the optimal mesh mapping calculation, anisotropic mesh generation and multi-cubic structure (Polygon) to automatically generate these three topics, as follows: A good mapping algorithm needs to ensure no inversion, low deformation and high computational efficiency. existing algorithms do not guarantee these characteristics at the same time. In this paper, an enhanced deformation minimizing energy (AMIPS) is designed, and a non-accurate block coordinate rotation descent algorithm (inact BCD) is used to rapidly calculate the optimal mapping without inversion. The AMIPS energy function inherits the traditional deformation minimization energy (MIPS) to ensure the non-turning property, and also can control the maximum deformation. The inact BCD optimization algorithm avoids the optimization process to fall into local minimum prematurely. Combined with the AMIPS energy function and the inact BCD optimization algorithm, this paper improves the efficiency and quality of mapping. The advantages of our algorithm are fully reflected in the application of mesh parameterization, two-dimensional triangular mesh and three-dimensional tetrahedral mesh deformation, two-dimensional and three-dimensional non-mesh deformation, anisotropic tetrahedron and hexahedral mesh quality improvement. However, the AMPS algorithm also suffers from the disadvantage that, for example, there is no support for grid deformation with many control points and is sensitive to initial mapping. In this paper, a method of assembling and separating grid cells is presented to calculate the optimal mapping without inversion. our approach accepts arbitrary mesh mapping as input that may be present with numerous flip-grid cells. we first separate all grid cells of the grid, keep the mapping on each grid cell low, and then calculate the optimal mapping without inversion by simultaneously optimizing the distance between the deformation and the separation vertex. Since the affine transformation on each grid cell is used as the optimization variable, we can get the optimal mapping by solving an unconstrained nonlinear non-convex optimization problem. The robustness and efficiency of our algorithm are also embodied in the application of planar mesh parameterization, grid deformation and so on. Anisotropic grids are very important in geometric modeling, physical simulation and mechanical engineering. Local Contex Triangulation (LCT) method is proposed for the generation of high-quality anisotropic grids. An anisotropic mesh generation problem is transformed into a function approximation problem by entering a surface, or a three-dimensional space region as a domain, and a known Riemann metric field on the domain. A locally convex function is constructed on each mesh cell, whose Hessian matrix is locally coincident with the input Riemann metric. I use the strategy of alternately updating the grid vertex position and changing the mesh connection relationship to reduce the function approximation error. Our LCT method extends the optimal Dealunay Triangulation (ODT), and can accept generalized Riemann metric fields as inputs and grids suitable for sharp variations of the Riemann metric field and the presence of sharp features. From the two-dimensional plane region, the three-dimensional space region and the anisotropic grid generated on the three-dimensional curved surface, we have high algorithm efficiency and high grid quality. In applications such as physical simulation and mechanical engineering, hexahedral meshes tend to have better properties than tetrahedral grids, such as fewer grid cells and higher calculation accuracy. In this paper, a hexahedral mesh is generated by high quality multi-cube structure. The multi-cube structure requires strict alignment with the X, Y, and Z axes of the surface triangle of the grid. The previous algorithm can not guarantee the four properties of non-inversion, low deformation, singularity controllability and calculation. This paper uses the inact BCD algorithm to optimize the surface method to smooth and align energy, which is used to drive the deformation of the mesh and eliminate the limit points automatically, so as to automatically generate the high-quality multi-cube structure. We introduce the kernel width of smooth function to control the singularity of multi-cube structure. The high efficiency of the inact BCD algorithm makes the efficiency of this algorithm far higher than that of the most advanced algorithm. The quality and efficiency of our algorithm are greatly improved compared with the most advanced algorithms in terms of the deformation of multi-cubic mapping and the results of six-and-body grid cattle.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.7

【相似文献】

相关期刊论文 前10条

1 江雄心;万平荣;;整体规划技术在三维有限元网格生成中的应用[J];锻压技术;2006年06期

2 赵广文;;数值网格生成方法[J];航空计算技术;1992年03期

3 买买提明·艾尼,古丽巴哈尔·瓦哈甫;用局部阻尼波形法的自连贯网格生成法[J];计算机辅助设计与图形学学报;2005年06期

4 贾超;张树壮;;支持裂纹扩展的三维有限元网格生成算法[J];计算机工程与应用;2006年31期

5 聂玉峰;常升;;基于节点的局部网格生成算法[J];计算力学学报;2006年02期

6 孙春华;陈雪芳;姜左;Hagiwara Ichiro;;基于Gregory法的N边域非自交结构网格生成[J];计算机应用;2007年12期

7 卢章平,赵泉;基于“边折叠”的可逆累进网格生成算法的研究[J];工程图学学报;2004年01期

8 蒙茂洲;;功能强大的网格生成软件——TrueGrid[J];CAD/CAM与制造业信息化;2010年01期

9 陈蔚蔚;聂玉峰;张伟伟;王磊;;高质量点集的快速局部网格生成算法[J];计算力学学报;2012年05期

10 胡洋瑞;龙永春;周浩;张莉;吴开腾;;基于改进阵面推进法的三维网格生成算法研究[J];内江师范学院学报;2013年08期

相关会议论文 前10条

1 郭高娟;刘剑飞;;狭窄区域的边界层网格生成[A];北京力学会第20届学术年会论文集[C];2014年

2 陈建军;郑耀;;并行三维非结构性网格生成[A];中国力学学会学术大会'2009论文摘要集[C];2009年

3 张艳英;苏杰先;崔明根;;多维流场的贴体网格生成方法[A];第一届全国流体动力及控制工程学术会议论文集[C];2000年

4 卢笙;叶友达;;空天飞行器建模及计算网格生成[A];计算流体力学研究进展——第十二届全国计算流体力学会议论文集[C];2004年

5 梁义;陈建军;陈立岗;郑耀;;二维并行网格生成及划分[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年

6 刘周;周伟江;;适于粘性计算的自适应笛卡尔网格生成[A];全国计算物理学会第六届年会和学术交流会论文摘要集[C];2007年

7 洪方文;张志荣;韦喜忠;黄国富;;转子+导管系统的网格生成研究[A];2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集[C];2008年

8 刘剑飞;;网格生成研究进展[A];北京力学会第18届学术年会论文集[C];2012年

9 韩旭里;刘新儒;包崇兵;;带形状控制参数的网格生成方法[A];中国计算机图形学进展2008--第七届中国计算机图形学大会论文集[C];2008年

10 肖涵山;陈作斌;刘刚;程克明;;基于STL文件的自适应笛卡尔网格生成[A];计算流体力学研究进展——第十二届全国计算流体力学会议论文集[C];2004年

相关博士学位论文 前4条

1 傅孝明;最优映射计算与网格生成[D];中国科学技术大学;2016年

2 梁义;自适应表面网格生成研究[D];浙江大学;2009年

3 黄橙;用于边界面法的三维体网格生成方法[D];湖南大学;2014年

4 张沐阳;高质量可控四边网格生成技术[D];浙江大学;2011年

相关硕士学位论文 前10条

1 高宇海;基于时域有限差分方法的网格生成新方法[D];国防科学技术大学;2011年

2 曹建;适应复杂外形粘性流动模拟的混合网格生成算法[D];浙江大学;2013年

3 金隽;网格生成算法研究和软件实现[D];复旦大学;2008年

4 王敏;三维复杂形体表面网格生成方法研究[D];南京理工大学;2005年

5 常升;基于节点的局部网格生成算法研究[D];西北工业大学;2006年

6 褚江;非结构动网格生成方法研究[D];南京理工大学;2006年

7 韩宏伟;非结构性网格生成及其后处理技术研究和实现[D];浙江大学;2008年

8 张永华;叶轮机CFD网格生成[D];南京航空航天大学;2007年

9 王彩玲;基于CAD三维表面网格生成与应用[D];南京理工大学;2004年

10 曾丽娟;面向自适应参数曲面网格生成的非结构单元尺寸场理论及算法[D];浙江大学;2014年



本文编号:2307898

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2307898.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户92bb1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com