双平面支持向量机的模型与算法研究
[Abstract]:Dual plane support vector machine (Twin Support Vector Machines, TSVM) is the nearest support vector machine algorithm in non-parallel plane. Its aim is to find two nonparallel hyperplanes, one is very close to one kind of sample point, and there is a certain distance from the other kind of sample point. It can solve a pair of small scale quadratic optimization problems, which is about four times faster than support vector machine (Support Vector Machines, SVM), and its performance is often better than SVM. TSVM has developed rapidly in recent years, and has been successfully applied in pattern recognition. In the field of data classification and function fitting, SVM's multi-task learning, multi-perspective learning and semi-supervised learning have attracted a large number of researchers to do research. In this paper, TSVM is extended to the framework of multi-task learning, multi-view supervised learning, multi-view semi-supervised learning and semi-supervised learning, and the generalization error bound of biplane support vector machine is analyzed by using PAC Bayesian theory. In the framework of multitask learning, we first propose a direct multitask biplane support vector machine (Direct Multitask Twin Support Vector Machines, DMTSVM), which is similar to the idea of multitask support vector machine (SVM). Each task will have a bias. In order to eliminate the sensitivity of biplane support vector machines to outliers, we propose a biplane support vector machine (Centroid Twin Support Vector Machines, CTSVM),) based on the distance between the center of the class and the hyperplane. Then we extend CTSVM to the framework of multitask learning in the same way, and get our multi-task centroid two-plane support vector machine (Multitask Centroid Twin Support Vector Machines, MCTSVM). In the framework of multi-view learning, we propose a multi-view biplane support vector machine (Multi-view Twin Support Vector Machines, MvTSVM) corresponding to multi-view supervised learning, and a multi-view Laplacian double-plane support vector machine (Multi-view Laplacian Twin Support Vector Machines,). MvLapTSVM) corresponds to multi-perspective semi-supervised learning. These two methods combine two perspectives through the idea of multi-view constraint, which is similar to that of SVM-2K.MvLapTSVM on the basis of MvTSVM, and draw lessons from Laplacian double plane support vector machine (Laplacian Twin Support Vector Machines,). LapTSVM) adds additional square loss and Laplacian normalization items. In a semi-supervised learning framework, we use a new normalized term, called tangent space intrinsic manifold normalized (Tangent Space Intrinsic Manifold Regularization, TSIMR). The canonical term can not only capture the local information of manifold by using tag data and unlabeled data, but also include the classical Laplacian canonical item. We combine it with TSVM for semi-supervised learning. An important reason that (Tangent Space Intrinsic Manifold Regularization Twin Support Vector Machines, TiTSVM). SVM is widely used in tangent space is that it is supported by strong statistical learning theory. PAC Bayesian bound and prior PAC Bayesian bound based on classifier distribution are the newest and most compact bounds in practical applications. In the end, the PAC Bayesian theory of statistical learning theory is used to analyze the theory bound of biplane support vector machine. In order to evaluate the proposed method, we have carried out comparative experiments on several real data sets. The experimental results show the effectiveness of the proposed algorithm.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP18
【相似文献】
相关期刊论文 前5条
1 郑南宁,许东华,徐维朴;基于双平面正交投影重建血管截面的新方法[J];中国图象图形学报;1999年02期
2 张春旺;姜涛;李大力;;关于构建双平面传输承载网的探讨[J];科技信息(科学教研);2007年30期
3 肖秀琴;魏_";;实现汇聚层和核心层的双平面构筑安全的传输网[J];电信技术;2007年01期
4 许飞,栾慧先;双平面构建下一代传输网[J];通信管理与技术;2005年03期
5 ;[J];;年期
相关会议论文 前10条
1 刘春军;栾杰;穆大力;穆兰花;辛敏强;;腋窝入路内窥镜辅助双平面隆乳500例[A];中华医学会整形外科学分会第十一次全国会议、中国人民解放军整形外科学专业委员会学术交流会、中国中西医结合学会医学美容专业委员会全国会议论文集[C];2011年
2 刘春军;栾杰;穆大力;穆兰花;辛敏强;;腋窝入路内窥镜辅助双平面隆乳500例[A];中华医学会整形外科学分会第十一次全国会议、中国人民解放军整形外科学专业委员会学术交流会、中国中西医结合学会医学美容专业委员会全国会议论文集[C];2011年
3 武剑辉;李传波;;双探头双平面实时显示技术及其应用[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(上册)[C];2007年
4 唐红;黄承孝;黄鹤;饶莉;宋海波;刘淑华;陈娇;;双平面超声心动图初步临床应用研究[A];庆祝中国超声医学工程学会成立20周年——第八届全国超声医学学术会议论文汇编[C];2004年
5 陈小燕;;双平面隆乳患者术后相关教育及随访工作[A];中华医学会整形外科学分会第十一次全国会议、中国人民解放军整形外科学专业委员会学术交流会、中国中西医结合学会医学美容专业委员会全国会议论文集[C];2011年
6 陈小燕;;双平面隆乳患者术后相关教育及随访工作[A];中华医学会整形外科学分会第十一次全国会议、中国人民解放军整形外科学专业委员会学术交流会、中国中西医结合学会医学美容专业委员会全国会议论文集[C];2011年
7 马晓静;黄国英;梁雪村;吴琳;陈张根;贾兵;;经食管超声心动图在儿童复杂性先天性心脏病手术治疗中的应用价值[A];2005年上海市生物医学工程学会学术年会论文集[C];2005年
8 杨云霞;李彬;郑志玉;徐丽娟;王佳琪;张玲芬;;应用内窥镜的“双平面”假体隆乳术[A];2012全国中西医结合医学美容学术交流大会论文汇编[C];2012年
9 刘成胜;石蕾;丁平;黄元生;蒲兰萍;车景龙;罗会勇;;双平面长三角形截骨法在下颌骨肥大整形中的应用[A];2012全国中西医结合医学美容学术交流大会论文汇编[C];2012年
10 吴中权;焦彤;李金芳;;双平面超声在直肠癌术前评估中的应用[A];中国超声医学工程学会第八届全国腹部超声学术会议论文汇编[C];2010年
相关重要报纸文章 前2条
1 UT斯达康(中国)有限公司 戴立;双平面传输网抢战电信竞争先机[N];通信产业报;2004年
2 UT斯达康公司 戴立;双平面方案建设下一代本地传输网[N];通信产业报;2004年
相关博士学位论文 前1条
1 谢锡炯;双平面支持向量机的模型与算法研究[D];华东师范大学;2016年
相关硕士学位论文 前3条
1 齐园;双平面目标模拟器控制器的工程化研究与实现[D];电子科技大学;2013年
2 邝宇;基于双平面正交投影的血管截面图像重建的研究[D];浙江大学;2004年
3 张东旭;内镜下经腋切口“双平面”法再次隆乳的临床研究[D];郑州大学;2013年
,本文编号:2325991
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2325991.html