基于检索的多选择图像修复研究

发布时间:2018-12-13 07:03
【摘要】:数字图像修复是利用图像完好区域的信息对缺损区域进行修复的一个过程。它要求修复后的结果保持良好的视觉观赏性,最大限度地减少修复过程中的人为痕迹。数字图像修复可以分为基于图像自身内容的修复技术和基于其它素材的多选择图像修复技术。相比于基于图像自身内容的修复技术,基于其它素材的多选择图像修复技术有着明显的优势。一方面,它可以有效地解决图像大面积缺损问题。另一方面,它为缺损图像提供了更多的修复选择,让修复结果更加有多样性和创造性。在媒体时代的今天,很多图像处理技术在媒体应用中发挥了重要的作用,基于其它素材的多选择修复技术作为图像处理中的重要技术为媒体应用提供了重要的技术支持。它的基本流程可以归纳为以下三个步骤:首先,需要从海量的图像库中检索出素材图像(和待修复图像相同或者相近的可以用来作为修复素材的图像);其次,需要对素材图像中的素材区域(素材图像中可以用来完成修复的目标区域)进行提取;再次,需要利用素材区域对缺损图像进行修复。但是,如何从大数据图像库中选取大量且精准的素材图像,如何从图像中精确地提取素材区域,如何减少修复过程中的人为痕迹(修复边缘梯度变化明显,前景和背景在颜色,纹理,噪声等特征上有着明显的差异)都是修复过程中的关键问题。传统的多选择图像修复算法往往没有有效地解决这些问题,从而直接降低了修复的质量。本文针对以上这些问题进行了深度分析,对“基于检索的多选择图像修复”进行了深入研究,全文的主要贡献包括以下几点:(1)针对素材图像检索正确率低下的问题,提出了一种素材图像优选模型。首先,该方法利用不同类别间的联合分布概率对素材图像进行初步检索,利用文字信息提前删除掉一些无关图像,有效地减少了工作量。其次,利用K-means聚类技术对图像进行分类,将图像分为风景类图像和物体类图像,根据图像类别利用不同的特征算子进行计算。最后,利用改进的空间金字塔函数完成待修复图像和待检索图像的匹配,实现高精度的图像匹配。三个环节紧密联系,有效地解决了素材图像检索正确率低下的问题,为多选择的图像修复技术提供了高效准确的素材图像。(2)针对难以精确提取素材区域的问题,提出了一种优化的素材区域提取模型。首先,该方法利用多尺度细节保留技术和多层平滑技术对素材图像进行深度优化,使得素材区域和背景部分有着显著的区分度。与此同时,素材区域自身的颜色,纹理差异也明显变小。优化后图像中的素材区域可以非常方便地被提取,有效地提升了提取精度。对于高质量的抠像技术(特殊情况下,素材区域需要高精度的提取),本文利用训练样本优选模型进行高精度抠取,有效地解决了抠取精度不足的问题。新的模型有效地解决了无法精确提取素材区域的问题,为多选择的图像修复技术提供了精准的素材区域。(3)针对修复过程复杂,修复结果人为痕迹明显的问题,提出了一种高质量的修复方法。首先,利用改进的foe(field of experts)算法对待修复部分进行修善,有效地提升了修复质量。在修善过程中,该方法对训练图像进行优选,有效地减少了工作量。然而,基于foe算法的简单修复缺乏多样性和创意性,除此之外,我们利用前面技术检索到的素材区域进行多选择性修复。在修复过程中,本文利用了多尺度的空间颜色匹配技术,多尺度的空间纹理匹配技术,以及多尺度的空间噪声处理技术。这些方法可以使得素材区域和待修复图像间的颜色,纹理等特征更加协调,使修复后的图像有更好的视觉效果。以上几个环节紧密联系,有效地优化了修复结果。
[Abstract]:Digital image repair is a process of repairing the defect area with the information of the image intact area. It requires good visual appreciation of the results after the restoration, and the artificial marks in the repair process can be reduced to the maximum extent. Digital image repair can be divided into a repair technique based on the content of the image itself and a multi-selection image repair technique based on other materials. Compared with the image-based self-content-based repair technology, the multi-selection image restoration technology based on other materials has obvious advantages. in one aspect, that invention can effectively solve the problem of large-area defect of the image. On the other hand, it provides more repair options for the defective image, making the results more diverse and creative. In the media age, many image processing techniques play an important role in the media application, and the multi-selection and repair technology based on other materials provides important technical support for media application as an important technique in image processing. its basic flow can be summed up as three steps: first, it is necessary to retrieve the material image (the same or similar image as the image to be repaired) from the mass of the image library; secondly, it is necessary to extract the material area in the material image (the target area that can be used to complete the repair in the material image); once again, the defect image needs to be repaired with the material area. However, how to select a large number of and accurate material images from the large data image library, how to extract the material area accurately from the image, how to reduce the artifacts in the repair process (the change of the repair edge gradient is clear, the foreground and the background are in color, texture, There is a significant difference in the characteristics of noise, etc.), which is the key problem in the repair process. Traditional multi-selection image restoration algorithms often do not effectively solve these problems, thus directly reducing the quality of the repair. In this paper, the depth analysis of the above problems is carried out, and the 鈥淢ulti-selection image restoration based on retrieval鈥,

本文编号:2376121

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2376121.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3d8e1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com