针对靶场图像增强算法的研究与实现
[Abstract]:In order to adapt to the rapid development of the new weapon and equipment, the modern range is an important place to identify the effective means of the weapon and equipment and provide the key test data. It is necessary to speed up the visualization, information and modernization of the test scene. Optical measuring equipment is an important part of range identification and testing, in which the photoelectric theodolite (PT) is an important optical measuring device for rapid capture, precision tracking and real-time detection of image transmission. In the range-range photoelectric theodolite, two kinds of heterologous imaging sensors are used to capture the ground targets or air-to-air targets, which are visible and infrared imaging systems, respectively. The visible-light imaging system can capture high-resolution and clear target information, and perform the interpretation of the motion track and the attitude parameter, thereby providing rich and reliable test data information to the ground command station. However, visible light imaging systems are susceptible to natural weather factors such as atmospheric jitter, rain, snow, and the like. If the moving target is blocked by an object such as a cigarette, a cloud, or the like, the visible light imaging system cannot complete the capturing operation, and the final target is lost; and if the difference between the moving target and the sky is small, the target position cannot be distinguished. The presence of these problems leads to the inability of the visible-light imaging system to capture an image that is in accordance with the range-to-motion target precise measurement requirements. In recent years, the infrared technology has the characteristics of strong anti-interference, strong penetrating power, long detection distance and all-weather work, and has gradually become the core technology of the research and development of all kinds of military equipment. The infrared imaging system has the advantages that the spatial resolution of the infrared image is much lower than that of the visible light image due to the diffraction characteristics and the manufacturing process of the optical system of the infrared imaging system, the target pixel point is mainly concentrated in a small-range gray-scale interval, the dynamic range of the image is narrow, the contrast is low, and the edge is blurred; and when the problems of the external environment interference and the imperfect of the imaging system are existed, the noise interference is caused, the signal-to-noise ratio of the target is low, and the target pixel point is easily flooded in the background; The infrared image is imaged according to the self-radiation characteristic, and the visual effect of the infrared image is far less than that of the visible light image and is easier to observe by the human eye. Therefore, the improvement of the range image quality is the key problem to improve the performance of the range-range photoelectric theodolite system. In this paper, the research of image enhancement algorithm for range image features is discussed in the light of the requirements of the research and defense military project. In order to improve the contrast, signal-to-noise ratio and visual effect of the infrared image of the range, the present situation and progress of the image enhancement technology at home and abroad are studied deeply, and the problems of low contrast and edge ambiguity are discussed. The invention provides a novel statistical mode adaptive platform histogram equalization enhancement method and a log membership degree fuzzy enhancement method based on a fuzzy set theory, aiming at the problem of low signal-to-noise ratio and low signal-to-noise ratio in the presence of noise interference, in ord to improve that visual effect of the image and meet the requirement of human visual perception, An image fusion enhancement algorithm based on fuzzy set theory and statistical property is proposed. The algorithm combines the characteristics of the multi-sensor to an image to be transmitted to the command station as the basis for leadership decision-making. At the same time, the hardware platform of the image enhancement system based on the FPGA and the DSP processor is set, and a large number of experimental verification is carried out on the enhanced algorithm after the transplantation, and the experimental results show that the proposed image enhancement algorithm is real-time and effective.
【学位授予单位】:中国科学院研究生院(长春光学精密机械与物理研究所)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 ;飞利浦半导体推出“灵动100”图像增强新技术[J];广播与电视技术;2001年11期
2 ;飞利浦半导体推出“灵动100”图像增强新技术[J];电子世界;2001年11期
3 高进;图像增强电路设计[J];光电技术应用;2005年05期
4 黄世国;耿国华;;一种非线性逆扩散图像增强算法[J];计算机应用;2006年08期
5 吴笑松;李明;;数字乳腺图像增强的应用和比较[J];CT理论与应用研究;2006年04期
6 都安平;赵永强;潘泉;张惠娟;;基于偏振特征的图像增强算法[J];计算机测量与控制;2007年01期
7 黄世国;耿国华;;一种前后向复扩散图像增强算法[J];小型微型计算机系统;2007年03期
8 李鸿燕;郝润芳;马建芬;王华奎;;基于独立分量分析的图像增强[J];弹箭与制导学报;2007年05期
9 史卉萍;耿国华;周明全;董建民;;基于模糊集的图像增强[J];微计算机信息;2008年24期
10 Barry E.Mapen;代永平;;波域中的图像增强[J];现代显示;2008年09期
相关会议论文 前10条
1 薛丽;王波涛;;基于形态学的运动员号码牌图像增强[A];第十九届测控、计量、仪器仪表学术年会(MCMI'2009)论文集[C];2009年
2 陈钳生;陈英;李润午;韦礼珍;;基于遗传优化的小波域印章图像增强研究[A];2007中国控制与决策学术年会论文集[C];2007年
3 张莹;王太勇;冷永刚;邓辉;;调参双稳系统图像增强应用初探[A];2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集[C];2008年
4 李孟歆;金风;张颖;;一种新的图像增强混合方法研究[A];创新沈阳文集(A)[C];2009年
5 谢云;余江;裴以建;白宝丹;;基于小生境遗传算法的图像增强[A];2007'仪表,,自动化及先进集成技术大会论文集(一)[C];2007年
6 卢汉明;高德俊;;基于多尺度变换相结合的图像增强算法[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
7 张铁栋;秦再白;朱炜;;基于模糊算法的水声图像增强[A];第十二届全国图象图形学学术会议论文集[C];2005年
8 刘毅;高旭辉;;一种改进的夜视图像增强处理算法[A];2006年全国光电技术学术交流会会议文集(D 光电信息处理技术专题)[C];2006年
9 刘海华;高智勇;陈心浩;舒振宇;;基于形态学操作的图像增强方法(英文)[A];第二届和谐人机环境联合学术会议(HHME2006)——第15届中国多媒体学术会议(NCMT'06)论文集[C];2006年
10 赵建;;基于偏微分方程的非线性图像增强方法[A];第九届全国信息获取与处理学术会议论文集Ⅱ[C];2011年
相关博士学位论文 前10条
1 陈燕;工业X射线图像增强算法研究[D];中北大学;2016年
2 赵文达;基于变分法和偏微分方程的图像增强和融合方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
3 云海姣;针对靶场图像增强算法的研究与实现[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
4 许欣;图像增强若干理论方法与应用研究[D];南京理工大学;2010年
5 李艳梅;图像增强的相关技术及应用研究[D];电子科技大学;2013年
6 陈一平;图像增强及其在视觉跟踪中的应用[D];国防科学技术大学;2011年
7 王彦臣;基于多尺度数字X光图像增强方法的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2005年
8 孙飞飞;水下图像增强和复原方法研究[D];中国海洋大学;2011年
9 潘天工;面向PACS系统的图像增强和图像加密算法研究[D];哈尔滨理工大学;2014年
10 鲁志波;医学图像增强与插值的算法研究[D];解放军信息工程大学;2007年
相关硕士学位论文 前10条
1 许文君;灰度图像多尺度对比度增强电路设计与实现[D];南京理工大学;2015年
2 陈萌;多重虚拟曝光夜视图像对比度增强算法研究[D];西南科技大学;2015年
3 孔壮;雾天图像增强方法研究及FPGA实现[D];电子科技大学;2015年
4 赵雨;基于加权红—黑小波变换的DR图像增强方法研究[D];南方医科大学;2015年
5 阿依古力·吾布力;基于剪切波和NSST变换的图像增强算法研究[D];新疆大学;2015年
6 楼彬彬;基于模式分解的医学图像增强方法的研究与实现[D];东北大学;2013年
7 王冲;基于视网膜机制的图像增强算法研究[D];电子科技大学;2015年
8 魏生峰;基于模糊数学理论的医学影像增强应用研究[D];电子科技大学;2014年
9 石鑫;运动模糊雾霾图像增强算法研究[D];东北大学;2013年
10 钱晟;基于Retinex理论的图像增强算法的应用研究[D];北京工业大学;2015年
本文编号:2482265
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2482265.html