生物医学文本中药物信息抽取方法研究
[Abstract]:With the development of biomedical research and Internet technology, the number of biomedical literature available on the Internet has increased dramatically. The mass of unstructured biomedical literature contains rich and valuable knowledge. As a biomedical entity that is widely studied, the drug is an important carrier of relevant knowledge. Extracting the structured drug information from the unstructured biomedical text can serve both the researchers and the medical professionals in the relevant field, and can be expanded and updated to update the existing drug knowledge base. As a result, more and more attention has been paid to the extraction of drug information in the biomedical texts, becoming the focus of the study. The current study of drug information extraction is mainly focused on the two problems of drug name recognition and drug-drug interaction, and the performance of the related methods can not meet the needs of the practical application. Therefore, this paper studies the two problems. The main research contents include the following parts: First, the method of drug name recognition based on multi-semantic feature fusion. The semantic feature of the drug-name dictionary has great help to identify the drug name, and is widely used in the drug name recognition method based on machine learning. However, the semantic features of the drug-name dictionary have some limitations due to the limited coverage of the drug-name dictionary and the non-timeliness of the update. It is noted in this document that large-scale unstructured biomedical literature contains a large number of unregistered drug names. In order to make up for the deficiency of the semantic features based on the dictionary, this paper proposes a method of drug name recognition based on multi-semantic feature fusion. The method utilizes large-scale unstructured biomedical literature to generate semantic features based on word vectors and is used in combination with the semantic features generated by the drug name dictionary for drug name recognition. The experimental results show that the performance of the drug name recognition method based on the multi-semantic feature fusion is superior to that of using a single semantic feature. And secondly, identifying the drug name based on the feature combination and the feature selection. A feature combination is to combine a plurality of different types of simple features into one combined feature. The advantage of a combination feature is that it can represent a number of attributes of a word in a statement, as compared to a simple feature. In the problem of drug name recognition, there are many possible combinations of features, which directly combine simple features to produce a large number of combined features, and contain a lot of noise and affect the performance of the model. Thus, in addition to the n-gram feature, the existing drug name recognition method generally uses only a simple feature. In order to effectively use the combination character, this paper presents a feature generation framework for drug-name recognition. The framework comprises a feature combination and a feature selection module, wherein the feature combination module combines the simple feature combination to obtain the combined feature, and the feature selection module removes a large amount of noise in the feature set. Based on the framework, the feature of the word vector, the character of the dictionary and the general characteristic combination are combined, and the obtained characteristics are used for the identification of the drug name with the airport model. The experimental results show that the performance of the drug name recognition method based on the feature combination and feature selection is superior to the drug name recognition method using only the simple feature. And thirdly, a method for extracting a drug interaction relationship based on a text-sequence convolution neural network. The traditional method for extracting the drug interaction relationship with good performance is based on a support vector machine. Such methods use a large number of human-defined features and require various external natural language processing tools to generate these features. As a result, its performance is greatly affected by the external natural language processing tool. In order to reduce the dependence of external natural language processing tools, this paper presents a method for extracting drug interaction relation based on a text-sequence convolution neural network. The method only needs to input the word vector obtained by the unsupervised depth learning algorithm and the randomly initialized position vector, and the feature is automatically learned through the convolution of the text sequence and the maximum pool operation, and is used for the relation extraction of the softmax classifier. The experimental results show that the method is superior to the traditional method based on the support vector machine. And fourthly, a method for extracting a drug interaction relationship based on a dependent structure convolution neural network. The method of drug-interaction relationship extraction based on the text-series convolution neural network ignores the long-distance dependence of words, which is important for the extraction of drug-interaction relationship. In this paper, a method for extracting the drug interaction relation based on the convolution neural network of the dependent structure is proposed, and the long-distance dependency relationship between the words is integrated into the convolution neural network model. The experimental results show that the long-distance relationship between the words can improve the performance of drug interaction. The syntax analysis of the long sentences has many errors, and these errors are propagated to the dependent structure convolution neural network model, which can affect the performance of the model. In order to avoid the error propagation, this paper combines a text-based sequence with a dependent structure-based convolution neural network method according to the length of the sentence. The experimental results show that this combination can further improve the performance of drug interaction.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.1
【相似文献】
相关期刊论文 前10条
1 石桢;姚天f ;;一种基于统计和规则的核心地名抽取方法[J];微型电脑应用;2013年02期
2 张世辉;一种新的基于距离的汉字笔画抽取方法[J];计算机工程;2003年14期
3 王大亮;涂序彦;郑雪峰;佟子健;;多策略融合的搭配抽取方法[J];清华大学学报(自然科学版);2008年04期
4 杨建明;;关系抽取方法研究[J];电子技术;2009年04期
5 孙继鹏;贾民;刘增宝;;一种面向文本的概念抽取方法的研究[J];计算机应用与软件;2009年09期
6 郑伟;吕建新;张建伟;;文本分类中特征预抽取方法研究[J];情报科学;2011年01期
7 肖明军,张巍,邹翔,蔡庆生;一种多策略联合信息抽取方法[J];小型微型计算机系统;2005年04期
8 郝博一;夏云庆;邬晓钧;郑方;刘轶;;基于泛化和繁殖的自举式意见目标抽取方法[J];清华大学学报(自然科学版);2009年S1期
9 栗春亮;朱艳辉;徐叶强;;中文产品评论中属性词抽取方法研究[J];计算机工程;2011年12期
10 蔡虹,叶水生;基于KPS的Web信息抽取[J];计算机与现代化;2005年06期
相关会议论文 前10条
1 宋涛;李素建;;基于流形排序的领域词抽取方法[A];第五届全国青年计算语言学研讨会论文集[C];2010年
2 卞真旭;;一种关键词抽取方法研究[A];2011年安徽省智能电网技术论坛论文集[C];2011年
3 罗斐;毛宇光;;基于领域分类的查询接口模式抽取方法[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年
4 栗春亮;朱艳辉;徐叶强;;中文产品评论中属性词抽取方法研究[A];第六届全国信息检索学术会议论文集[C];2010年
5 刘昊;王健;林鸿飞;;一种模板与图核融合的蛋白质关系抽取方法[A];第六届全国信息检索学术会议论文集[C];2010年
6 翁伟;王厚峰;;基于LDA的关键词抽取方法[A];第五届全国青年计算语言学研讨会论文集[C];2010年
7 何莉;林鸿飞;;一种面向WEB的生物医学领域英汉术语翻译对抽取方法[A];中国计算机语言学研究前沿进展(2007-2009)[C];2009年
8 左云存;宗成庆;;基于HMM的短语翻译对抽取方法[A];全国第八届计算语言学联合学术会议(JSCL-2005)论文集[C];2005年
9 王裴岩;张桂平;白宇;;一种基于核函数的技术关键词连接关系抽取方法[A];第六届全国信息检索学术会议论文集[C];2010年
10 蒲宇达;关毅;王强;;基于数据挖掘思想的网页正文抽取方法的研究[A];第三届学生计算语言学研讨会论文集[C];2006年
相关博士学位论文 前2条
1 刘胜宇;生物医学文本中药物信息抽取方法研究[D];哈尔滨工业大学;2016年
2 李传席;基于本体的自适应Web信息抽取方法研究[D];中国科学技术大学;2012年
相关硕士学位论文 前10条
1 陈倩;基于特征模型的跨领域信息抽取方法研究[D];上海大学;2015年
2 刘骁;基于产品评论的意见抽取方法研究[D];黑龙江大学;2015年
3 洪军建;面向社会网络应用的人物关系抽取方法研究[D];西藏大学;2016年
4 梅莉莉;基于领域特殊性和统计语言知识的新词抽取方法[D];北京理工大学;2016年
5 陈亚东;面向数据稀疏问题的英文事件抽取研究[D];苏州大学;2016年
6 朱珠;基于双语的事件抽取方法研究[D];苏州大学;2016年
7 余伟;基于领域知识的Web信息抽取方法研究[D];安徽工程大学;2016年
8 吕云云;基于集成学习的中文观点句抽取方法研究[D];山西大学;2013年
9 杨云;基于句法结构的评价对象抽取方法研究[D];东北师范大学;2015年
10 方莹;基于句子聚类的信息抽取方法研究[D];山西大学;2005年
,本文编号:2496275
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2496275.html