三角形面积公式_平面图形的周长和面积 总复习(二)(2)
本文关键词:平面图形的周长和面积,由笔耕文化传播整理发布。
4.一圆形水池,直径为30米,沿着池边每隔5米栽一棵树,最多能栽 棵。
5.把一平行四边形的框架拉成一长方形,面积( ),周长( ) 。把一平行四边形通过剪、移、拼的方法拼成一长方形,面积( ),周长( )。
6.一个圆的半径扩大3倍,周长扩大( ),面积扩大( )。
(二)判断
1.半径是2厘米的圆,周长和面积相等。 ( )
2.两端都在圆上的线段中,直径最长。 ( )
3.大圆的圆周率大于小圆的圆周率。 ( )
4.如果长方形、正方形、圆它们周长相等,那么圆的面积最大。( )
(三)解决问题
1.在一个直径为20厘米的圆内剪一个最大的正方形,正方形的面积占圆面积的几分之几?
2.从一张长3厘米、宽2.5厘米的长方形纸片上剪下一个最大的正方形,求这个正方形的周长。
3.在一个半径5米的圆形花坛周围修一条宽2米的走道,走道的面积是多少平方米?
4.用一长20厘米的铁丝正好围一个长方形(长、宽都是整厘米数)计算它的面积。
5.小方从家到学校的距离约有2千米。一辆自行车轮胎的外直径约70厘米,小方骑这辆自行车,如果轮胎每分种转100周,他从家到学校约需几分种?(得数保留整数)
课前思考:
复习平面图形的周长和面积计算。第9题让学生在方格纸上画出一个长方形、三角形、平行四边形和梯形,并使它们面积相等。画出的三角形底与高的乘积要等于长方形长与宽乘积的2倍;平行四边形底与高的乘积要等于长方形长与宽的乘积;梯形上底与下底之和与高的乘积等于长方形长与宽乘积的2倍。第10题先让学生在两个边长6厘米的正方形里画圆,要求在其中一个正方形里画一个最大的圆,在另一个正方形里画4个相等的、尽量大的圆;然后让学生分别计算两个正方形里圆的面积以及它们各占所在正方形面积的百分数。由于上述两种画法得到的1个圆与4个圆的面积是相等的,它们与每个正方形面积的百分比也是一样的,因而很容易引发学生进一步思考:这个现象是否普遍存在?由此,教材让学生继续在这样的正方形里画9个相等的、尽量大的圆,,让学生通过计算和比较验证此前的猜想。这样的活动既体现了知识的综合与应用,又蕴含了数学的奇妙,有利于激发学生的探索欲望,锻炼学生的探索能力。第11题让学生借助操作,解决“靠墙围一块长方形菜地,怎样面积最大”的问题,有利于学生在解决问题的过程中进一步体会面积与周长的关系,积累解决问题的经验,提高解决问题的策略水平。
本文关键词:平面图形的周长和面积,由笔耕文化传播整理发布。
本文编号:147540
本文链接:https://www.wllwen.com/wenshubaike/caipu/147540.html