上海交通大学环境科学与工程学院
本文选题:上海 + 交通大学
绿色能源环境化学
来源: 发布时间:2016-10-27 点击次数:
团队负责人:赵一新
主要研究方向:
1)太阳能转化的绿色能源化学;
2)节能环保功能材料。
绿色能源化学Green Energy Chemistry
高效率钙钛矿太阳能电池
通过开发新型溶液法制备基于有机无机混合型钙钛矿CH3NH3PbI3材料的高效率的廉价太阳能电池,该项技术由于实现了低成本和高效率的两大目标,并且可以在不同衬底上制备各种颜色的高效电池,使其成为很有商业应用前景的热点研究。我们通过设计新的合成体系实现了了动力学调控合成具有特殊纳米结构的钙钛矿材料,实现了电池的高效率和高稳定性。
High Efficiency Low Cost Perovskite Solar Cell
Most recently, lead halide perovskites CH3NH3PbI3, developed by Park, Gratzel, Snaith, Seok and other pioneering groups, have been emerged as one of the most promising materials for low-cost solar cells with >15% efficiency.This new cells are made from a low cost inorganic/organic hybrid perovskite CH3NH3PbX3 with tunable spectrum to efficiently absorb sunlight. The material is easy to fabricate using solution chemistry, which could be printed on substrates like ink in a printing press, or made from simple evaporation. We had developed a MACl assistant kinetic control growth of high quality CH3NH3PbX3 as an easy, affordable route to fabricate high efficiency solar cells.
用于太阳能电池的能隙可调的钙钛矿材料Perovskite materials for solar cell
光电化学光解水电池Photoelectrochemical Water Splitting Cells
利用原料广泛可以充分利用可见光的硅材料制备空气中稳定的纳米硅光电极,将其用于高效率的光催化产氢。开发和制备纳米结构的高性能的稳定性产氧反应助催化剂,设计和研究取代贵金属的低成本催化剂用于光电化学电池的产氧反应。通过组合光阳极和光阴极来实现高效率的完全光解水。
Photoelectrochemical Water Splitting Cells
Photosynthesis is a proof of a very large scale solar fuel demonstrated by nature. Although photosynthesis provides all the food and the fossil fuel, the energy conversion efficiency in photosynthesis is just about 1%, which is much lower than photovoltaics. Photoelectrochemical cells (PECs) is a promising technique to achieve higher solar fuel conversion efficiency. Our research focus on developing air stable nanostructured photocathod based on inexpensive, earth-abundant, and industrially mature Si with the advantages of a low band gap that uses much of the solar spectrum and more active surface area for hydrogen production.We also work on developing high active catalysts to overcome kinetically demanding process in the four-electron oxidation of water limit the performance of photoanodes to achieve a better overall water splitting PECs.
节能环保材料Functional nanomaterials for environmental remediation
用于环境催化的多孔功能材料
多孔功能材料由于其较高的比表面积,规则的孔道结构,易修饰的表面性质以及组分可调而提供了优异的吸附、催化的微纳米空间,,也逐渐用于环境中不同形态污染物的治理。新兴多孔功能材料的开发以及在环境催化中的应用是未来污染控制材料的重要选择和环境污染物治理的重要手段。
Porous functional materials for Environment catalysis
Owing to the high surface area, ordered porous structures, easily functionalized surface properties and various compositions, porous functional materials provides excellent adsorption and catalysis micro/nano-space, which have been widely used in remediation of all kinds of environmental pollutants. We are focusing on developing new porous functional materials and their practical applications in environmental catalysis as the candidates for pollution control and environmental pollution remediation, respectively.
用于环境污染物控制的功能多孔材料 Functional porous materials for pollutant control
环境净化光催化材料
光催化属于高级氧化中的一类新兴氧化技术,其基本原理是通过光激发半导体材料后形成的电子和空穴,以及电子和空穴与周围物种间形成的自由基,进而利用电子的还原能力以及氧化物中和空穴的氧化能力净化环境污染物。到目前为止,光催化存在量子效率低,太阳光中可见-红外光部分利用不足,光催化剂失活等问题。我们致力于开发高效、低廉以及高寿命的光催化材料,实现对太阳能最大效率利用等问题。
Photocatalysis for environmental remediation
Photocatalysis belongs to one of the most popular oxidation techniques in the advanced oxidation process (AOP). The basic principle of photocatalysis is to cleanup environmental pollutants via the redox reaction by photoexicted electrons/holes or their derived radicals under the irritation of sunlight. We are dedicated to develope efficient, low-cost and long use-life photocatalytic materials and realizing the maxium utilization of solar energy.
联系方式 CONTACT
OFFICE: +86-21-54745704
E-MAIL: yixin.zhao@sjtu.edu.cn
编辑:
责任编辑:
分享到:
2016-10-27
环境化工研究团队
2016-10-27
环境化学与生态毒理学团队本文编号:1909001
本文链接:https://www.wllwen.com/wenshubaike/dxkc/1909001.html