当前位置:主页 > 论文百科 > 职称论文 >

数的奇偶性 教案 教学设计 试题 课件 实录 案例 反思

发布时间:2016-05-10 10:57

  本文关键词:数的奇偶性,由笔耕文化传播整理发布。


数的奇偶性 更多相关文章 相关课件

教学内容:教材第14~15页。
教学目标:
1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:探索并理解数的奇偶性
教学难点:能应用数的奇偶性分析和解释生活中一些简单问题
教学过程:
一、游戏导入,感受奇偶性
1、游戏:换座位
    首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
    (游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)
2、讨论:为什么会出现这种情况呢?
    学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。
    (此时学生议论纷纷,正是引出偶数、奇数的最佳时机)
3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。
    学生相互举例说说怎样的数是奇数,怎样的数是偶数。
二、猜想验证,认识奇偶性
    活动1
(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。
(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?
(3)探究活动
    学生可能会运用数的方法得出结果,不一定正确。
    师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?
    引导学生运用策略:①列表法;②画示意图法。
三、实践操作、应用奇偶性
    我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。
1、试一试
(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。
    学生动手操作,,发现规律:奇数次朝下,偶数次朝上。
    师:把杯子换成硬币,你能提出类似的问题吗?
(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?
    你手上只有一个杯子怎么办?(学生:小组合作)
    学生开始动手操作。
    反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。
    引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。
    学生动手操作,尝试发现
    交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。
    学生再次操作,感受过程,体验结论。
2、活动2
    出示两组数:圆中的数有什么特点?正方形中的数有什么特点?
(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。
    如果两个数相减呢?如果是连加或连减呢?
    汇报成果:
(1)奇数﹢奇数=偶数  (2)奇数-奇数=偶数   (3)奇数+奇数+……+奇数=奇数(奇数个)
   偶数+偶数=偶数        偶数-偶数=偶数        奇数+奇数+……+奇数=偶数(偶数个)
   奇数+偶数=奇数        奇数-偶数=奇数        偶数+偶数+……+偶数=偶数
    你能举几个例子说明一下吗?
    (学生的举例可以引导从正反两个角度进行)
(2)运用判断下列算式的结果是奇数还是偶数。
10389 + 2004:_____    46786-5787: _____   11231+2557+3379+105:   
11387 + 131: _____    60075-997: _____    335+7757+223+66789+73:   
268 + 1024: _____     9876-5432: _____    2+4+6+8+10……+998+1000: 
3、游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?
    学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?
    生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。
    是呀,这是老师在街上看到的一个骗局,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?
    学生自由说。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

教学反思:
    踏入七中育才(东区),心情就像这九月的天气一样时阴时晴。教学的压力,学生的现状,迫使我不得不放下我原有的教学模式,改进教学策略,尽快适应这所学校紧张的氛围。
    听说学校要组织青年教师公开课比赛,我第一个报了名,旨在让其他老师给我提出一些建设性意见,提高我的课堂教学能力。最后定于第三周完成我的展示。
    我上的是五年级数学“数的奇偶性”一节内容。报名后,我便积极的着手准备,钻研教材,查阅资料,设计程式,制作课件,并虚心请教了同教研组的余加秋老师和刘红敏老师,征求了他们的意见。
    我的设计思路是:多给学生思维的空间;让学生全方位参与学习;要让学生体验到数学的探索方法;体现数学的生活化和趣味性。为此,我的教学目标定格为:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
    在此基础上,我对教学过程进行了如下设计:
一、游戏导入,感受奇偶性
    通过两两结对入座的游戏引出数的奇偶性
二、猜想验证,认识奇偶性
    教学“活动1”,引导学生运用策略:应用列表法和画示意图法探索数的奇偶性
三、实践操作、应用奇偶性
1、翻杯子游戏。
2、探索整数加减法得数的奇偶性,通过学生独立猜想,小组内交流,统一验证,巩固练习,让学生自主获取新知。
3、游戏“开心乐”,运用数的奇偶性解释生活中的现象。
四、课堂小结,课后延伸。
    课后,教研组组织了所有老师评课。老师们各抒己见,既肯定了我的教学风格,又提出了宝贵的意见,让我受益非浅。我也及时的自省,在不同层面上进行了思考。
1、游戏是学生喜闻乐见的教学形式,能够激发学生的学习兴趣。但是不能没有目的性的为了游戏而游戏,应该在游戏中给学生解决数学问题的启发。本节课,我一共设计了两两结对入座的游戏、翻杯子游戏、“开心乐”等三个游戏,都是结合了教学内容而安排的,第一个游戏重在感受数的奇偶性,第二个游戏重在应用数的奇偶性,第三个游戏重在解释数的奇偶性,游戏的重心最后都落到了“数的奇偶性”上,因此起到了预想的效果。
2、现行的教材内容的广度和深度都有很大的挖掘空间,课前的准备将直接影响课堂教学的容量。本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还有值得改进的地方。
3、新课后的应用新知,不能单纯的是例题的改版,还应该有所变化,有所突破,注入新的元素,这样才能让学生灵活牢固的掌握所学知识。这节课中,我所设计的练习就过于程式化,没有跳出固有的“圈”,顺向思维练得多,逆向思维练得少,学生很难推陈出新。
4、数学课上的板书必须要能诠释重点,疏通难点。我在这堂课上的板书做到了前者,而疏漏了后者。“探索整数加减法得数的奇偶性”是本节课的重点,我特意将探索结果板书罗列了出来;探索的过程,是一个不完全归纳的思维过程,本是难点,但我没有把算式板书出来,就有点“空对空”的感觉了。
    以上仅是我现有的一点感触,我想,随着教学工作的不断深入,我和学生的不断磨合,教学过程中还有许多的问题等着我去解决,我会以最好的状态去迎接每一次的挑战。


数的奇偶性 来自费尔教育。 点这里回到顶部

上一篇:《数的奇偶性》说课设计

下一篇:“数的奇偶性”教学设计与反思


  本文关键词:数的奇偶性,由笔耕文化传播整理发布。



本文编号:43525

资料下载
论文发表

本文链接:https://www.wllwen.com/wenshubaike/gongguanliyi/43525.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9ed6a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com