分解质因数
本文关键词:分解质因数,由笔耕文化传播整理发布。
首页 > 教案下载 > 小学教案 > 小学数学 > 分解质因数
分解质因数
教学内容: 教科书第60页例3,练习十三的第5~9题.
教学目的
1.使学生理解质因数和分解质因数的含义,初步掌握分解质因数的方法.
2.培养学生的观察能力、分析能力.
教具准备:视频展示台.教学过程一、复习准备
1.能被2、3、5整除的数的特征是什么?
2.什么叫质数,什么叫合数?
随学生回答,用视频展示台展示:
质数
只有1和它本身两个约数.
合数
除了1和它本身还有别的约数.
3.说出20以内的质数和合数.
4.下面哪些数是质数,哪些数是合数?它们各能被哪些数整除?
3 6 21 28 53 60 75 97
二、导入新课
教师:这节课我们就在掌握上面这些知识的基础上,学习分解质因数.
板书课题:分解质因数
三、进行新课
1.教学例3.
教师:先和同学们玩一个游戏,玩游戏之前要交代几条游戏规则(用视频展示台出示).
(1)写成两个数相乘或连乘的形式,连乘的因数越多得分越高;
(2)只能用自然数;
(3)不能用1.
教师:这几条规则明白没有?(明白了)好!现在以小组为单位进行比赛,由老师写一个数,你们把能写成几个数连乘的数写成几个数连乘,不能按游戏规则写成乘法算式的数就不要写了.例如:
4=2×2 12=2×2×3 17= 22=2×11
教师:每正确写一个乘号得一分,如把12写成2×2×3得2分,而写成4×3得1分;写错一个乘号扣一分,,如把17写成1×17,因为我们规定不能用1,所以要倒扣一分.最后哪组的分加起来最多这个小组获得胜利.这样的游戏规则弄懂没有?
学生不清楚的地方可以提问,直到每个学生都弄懂了游戏规则再开始游戏.
游戏开始,教师在视频展示台上出示下面的数.
3= 6= 21= 48= 53= 50= 75= 97=
学生小组讨论把这些数按游戏规则写成乘法算式.写完后,在视频展示台上展示学生写的作业,按游戏规则加分后,评出得分最高的三个组,分别发给大红旗、小红旗和小红花.然后教师请学生观察自己的作业,问学生:哪些数能写成几个数相乘的形式,哪些数不能?随学生的回答,教师在视频展示台上展示:
3、53、97不能写成几个数相乘的形式;
6、21、48、50、75能写成几个数相乘的形式.
教师:再观察,上一排数都是什么数?(质数)为什么质数不能按游戏规则写成几个数相乘的形式?
引导学生讨论后说出:质数只有约数1和它本身,因而只能写成“1×这个数本身”,因为游戏规则不能用1,所以按游戏规则不能写成几个数相乘的形式.
教师:下一排又是些什么数呢?(合数)为什么合数能按游戏规则写成几个数相乘的形式呢?
引导学生说出:合数除了1和它本身以外,还有其它约数,如6除了1和6以外,还有约数2和3,所以可以写成6=2×3.
教师:对了.按照游戏规则,只有合数才能写成几个数相乘的形式,所以我们分解质因数就重点研究如何把一个合数分解成几个数连乘的形式.看看下面这些数都分解成了两个数相乘的形式,但是它们有什么不同?(师板书)
6 28
/ \ 6=2×3 / \ 28=4×7
2 × 3 4 × 7
学生讨论后回答:6分解成2×3后按游戏规则就不能再分解了;但是28分解成4×7后,4×7中的4还可以分解成2×2.
教师:你是怎样发现4还能分解的呢?
引导学生说出:因为4不是质数,所以很容易发现4还能分解.
教师:那么我们在分解一个数时,要把这个数分解到什么时候为止呢?
生:分解到都是质数就不再分解了.
教师:请同学们帮助老师把28分解成质数连乘的形式.
引导学生把28分解为: 28 28=2×2×7
/ \
4 × 7
/ \
2 × 2
教师:这样把一个数分解成质数相乘的形式,同学们会分解吗?(会)请同学们把60、84分解成质数相乘的形式.
指导学生进行数的分解,分解完后将学生的作业在视频展示台上展示,请学生评一评,这样分解对不对.重点观察是否将这些数分解成了质数相乘的形式.
教师:像这样每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.(板书质因数的含义,学生默读两遍.)
引导学生想一想,52=13×4,13和4都是52的因数吗?都是52的质因数吗?52的质因数是多少?学生回答后,再请学生思考:刚才我们的游戏规则为什么“不能用1?”引导学生说出,因为1不是质数,所以也不能作为一个数的质因数.
教师:从上面的例子中你能总结出什么叫分解质因数吗?
引导学生归纳出:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.教师板书分解质因数的意义,引导学生读两遍;然后指导学生完成练习十三的第7题,做完后集体订正.
2.教学用短除法分解质因数.
教师:刚才我们学习了一步一步地分解质因数,这样分解起来比较麻烦,为了简便,通常我们用短除法来分解质因数.
教师向学生说明短除法是笔算除法竖式的简化,并以6和28为例向学生具体介绍短除法的书写方法,被除数写在哪里,除数写在哪里,商又写在哪里?然后重点问学生用什么作除数?为什么要用这个数作除数.如:
教师:用哪个数去除28呢?
学生:根据分解质因数的意义,应该用质数去除.
教师:用哪个质数呢?
学生:用2和7都可以.但是最好先用2作除数,因为28的个位数是8,一眼就能看出能被2整除.
教师:对!用短除法分解质因数时,通常先用一个最小的能整除这个合数的质数去除.(师板书:2| 28 14)
教师:除完了吗?(没有)为什么?(因为商14还能被2整除)那就再商2.(师板书略)这次的商7还除不除?(不除了)为什么?
启发学生说出因为7是质数,达到了分解质因数的目的.或者说7除了1和它本身外,没有其它约数了.这时再指导学生把各个除数和最后的商写成连乘的形式.
教师:谁能把用短除法分解质因数的方法归纳一下?
引导学生归纳出:写出短除式──用能整除这个合数的最小质数去除──商如果是合数,照上面的方法除下去,直到商是质数止──把除数和最后的商写成连乘的形式.
教师:用这个方法把24、56分解质因数.
学生解答后,集体订正.
四、巩固练习
1.学生完成练习十三的第8题,做完后集体订正.
2.指导学生阅读第62页下面的“你知道吗?”并让学生说一说读后知道了什么
五、课堂小结
师生共同小结以下内容:
1.这节课学习了什么内容?
2.什么叫质因数,什么叫分解质因数?怎样用短除法分解质因数?
3.你还知道些什么?
六、课堂作业
练习十三第5题和第9题.
板书设计
分解质因数
6 28 2| 28
/ \ / \ 2| 6 2| 14
2 × 3 4 × 7 3 7
/ \
2 × 2
6=2×3 28=2×2×7 6=2×3 28=2×2×7
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数.
把一个合数用质因数相乘的形式表示出来,叫做分解质因数.
写出短除式──用能整除这个合数的最小质数去除──商如果是合数,照上面的方法除下去,直到商是质数为止──把除数和最后的商写成连乘的形式.
教学设计说明
本课从游戏入手,容易引起学生的好奇和注意,使学生乐于参与并主动参与学习活动,在活动中积极发挥自己的主体作用.实质上整个游戏的过程就是学生主动探究新知的过程,首先通过游戏,让学生发现有些数能按游戏规则写成几个数相乘的形式,而有些数则不能,这就为分解质因数确定了研究范围;再通过怎样把一个合数分解成几个数连乘的形式的研究,让学生意识到6=2×3不能再分了,而28=4×7中的4还能再分成2×2,由此确定最终要分解成质数相乘的形式,初步形成了质因数和分解质因数的概念.在此基础上教师用定义的形式直接揭示概念,肯定学生的探究成果,最后通过必要的练习强化质因数和分解质因数的概念,提高学生对其概念的掌握水平.为了分散其难点,教学一开始没有向学生讲明分解质因数时为什么不能用1的道理,而是通过游戏规则出示给学生,要求学生必须遵守这条规则.在学生理解了质因数和分解质因数等概念后,再问学生为什么游戏规则不能用1,学生凭借掌握的概念,就能很清楚地说明其中的道理.在难点较为集中的情况下,用规则先呈现学生不能理解的知识,在学习的过程中帮助学生逐步理解,是分散学习难点的一种较好的方法.
本课在教学用短除法分解质因数时,首先说明用短除法分解质因数要比一步一步地分解更简便适用,激起学生学习短除法的兴趣,然后重点放在对用短除法分解质因数的原理的理解、书写方式和计算方法上,特别对用哪个数作除数,为什么要用较小的质数作除数等一系列问题进行了探讨,使学生能明确其算理,准确地掌握用短除法分解质因数的方法,在此基础上对方法进行归纳,再指导学生把归纳的方法用于解题实践,提高学生对知识的掌握水平.
本文关键词:分解质因数,由笔耕文化传播整理发布。
本文编号:46708
本文链接:https://www.wllwen.com/wenshubaike/gongguanliyi/46708.html