当前位置:主页 > 论文百科 > 英文数据库 >

Hadoop基础教程pdf 中文完整版

发布时间:2016-08-26 12:07

  本文关键词:Hadoop基础教程,由笔耕文化传播整理发布。


Hadoop基础教程》包括三个主要部分:第1~5章讲述了Hadoop的核心机制及Hadoop的工作模式;第6~7章涵盖了Hadoop更多可操作的内容;第8~11章介绍了Hadoop与其他产品和技术的组合使用。

Hadoop 是一些大型搜索引擎数据缩减功能的核心部分,但是它实际上是一个分布式数据处理框架。搜索引擎需要收集数据,,而且是数量极大的数据。作为分布式框架,Hadoop 让许多应用程序能够受益于并行数据处理。

Hadoop基础教程目录

第1章 绪论 
1.1 大数据处理 
1.1.1 数据的价值 
1.1.2 受众较少 
1.1.3 一种不同的方法 
1.1.4 Hadoop 
1.2 基于Amazon Web Services的云计算 
1.2.1 云太多了 
1.2.2 第三种方法 
1.2.3 不同类型的成本 
1.2.4 AWS:Amazon的弹性架构 
1.2.5 本书内容 
1.3 小结 

第2章 安装并运行Hadoop 
2.1 基于本地Ubuntu主机的Hadoop系统 
2.2 实践环节:检查是否已安装JDK 
2.3 实践环节:下载Hadoop 
2.4 实践环节:安装SSH 
2.5 实践环节:使用Hadoop计算圆周率 
2.6 实践环节:配置伪分布式模式 
2.7 实践环节:修改HDFS的根目录 
2.8 实践环节:格式化NameNode 
2.9 实践环节:启动Hadoop 
2.10 实践环节:使用HDFS 
2.11 实践环节:MapReduce的经典入门程序——字数统计 
2.12 使用弹性MapReduce 
2.13 实践环节:使用管理控制台在EMR运行WordCount 
2.13.1 使用EMR的其他方式 
2.13.2 AWS生态系统 
2.14 本地Hadoop与EMR Hadoop的对比 
2.15 小结 

第3章 理解MapReduce 
3.1 键值对 
3.1.1 具体含义 
3.1.2 为什么采用键/值数据 
3.1.3 MapReduce作为一系列键/值变换 
3.2 MapReduce的Hadoop Java API 
3.3 编写MapReduce程序 
3.4 实践环节:设置classpath 
3.5 实践环节:实现WordCount 
3.6 实践环节:构建jar文件 
3.7 实践环节:在本地Hadoop集群运行WordCount 
3.8 实践环节:在EMR上运行WordCount 
3.8.1 0.20之前版本的Java MapReduce API 
3.8.2 Hadoop提供的mapper和reducer实现 
3.9 实践环节:WordCount的简易方法 
3.10 查看WordCount的运行全貌 
3.10.1 启动 
3.10.2 将输入分块 
3.10.3 任务分配 
3.10.4 任务启动 
3.10.5 不断监视JobTracker 
3.10.6 mapper的输入 
3.10.7 mapper的执行 
3.10.8 mapper的输出和reducer的输入 
3.10.9 分块 
3.10.10 可选分块函数 
3.10.11 reducer类的输入 
3.10.12 reducer类的执行 
3.10.13 reducer类的输出 
3.10.14 关机 
3.10.15 这就是MapReduce的全部 
3.10.16 也许缺了combiner 
3.11 实践环节:使用combiner编写WordCount 
3.12 实践环节:更正使用combiner的WordCount 
3.13 Hadoop专有数据类型 
3.13.1 Writable和Writable-Comparable接口 
3.13.2 wrapper类介绍 
3.14 实践环节:使用Writable包装类 
3.15 输入/输出 
3.15.1 文件、split和记录 
3.15.2 InputFormat和RecordReader 
3.15.3 Hadoop提供的InputFormat 
3.15.4 Hadoop提供的RecordReader 
3.15.5 OutputFormat和Record-Writer 
3.15.6 Hadoop提供的OutputFormat 
3.15.7 别忘了Sequence files 
3.16 小结 

第4章 开发MapReduce程序 
4.1 使用非Java语言操作Hadoop 
4.1.1 Hadoop Streaming工作原理 
4.1.2 使用Hadoop Streaming的原因 
4.2 实践环节:使用Streaming实现Word-Count 
4.3 分析大数据集 
4.3.1 获取UFO目击事件数据集 
4.3.2 了解数据集 
4.4 实践环节:统计汇总UFO数据 
4.5 实践环节:统计形状数据 
4.6 实践环节:找出目击事件的持续时间与UFO形状的关系 
4.7 实践环节:在命令行中执行形状/时间分析 
4.8 实践环节:使用ChainMapper进行字段验证/分析 
4.9 实践环节:使用Distributed Cache改进地点输出 
4.10 计数器、状态和其他输出 
4.11 实践环节:创建计数器、任务状态和写入日志 
4.12 小结 

第5章 高级MapReduce技术 
5.1 初级、高级还是中级 
5.2 多数据源联结 
5.2.1 不适合执行联结操作的情况 
5.2.2 map端联结与reduce端联结的对比 
5.2.3 匹配账户与销售信息 
5.3 实践环节:使用MultipleInputs实现reduce端联结 
5.3.1 实现map端联结 
5.3.2 是否进行联结 
5.4 图算法 
5.4.1 Graph 101 
5.4.2 图和MapReduce 
5.4.3 图的表示方法 
5.5 实践环节:图的表示 
5.6 实践环节:创建源代码 
5.7 实践环节:第一次运行作业 
5.8 实践环节:第二次运行作业 
5.9 实践环节:第三次运行作业 
5.10 实践环节:第四次也是最后一次运行作业 
5.10.1 运行多个作业 
5.10.2 关于图的终极思考 
5.11 使用语言无关的数据结构 
5.11.1 候选技术 
5.11.2 Avro简介 
5.12 实践环节:获取并安装Avro 
5.13 实践环节:定义模式 
5.14 实践环节:使用Ruby创建Avro源数据 
5.15 实践环节:使用Java语言编程操作Avro数据 
5.16 实践环节:在MapReduce中统计UFO形状 
5.17 实践环节:使用Ruby检查输出数据 
5.18 实践环节:使用Java检查输出数据 
5.19 小结 

第6章 故障处理 
6.1 故障 
6.1.1 拥抱故障 
6.1.2 至少不怕出现故障 
6.1.3 严禁模仿 
6.1.4 故障类型 
6.1.5 Hadoop节点故障 
6.2 实践环节:杀死DataNode进程 
6.3 实践环节:复制因子的作用 
6.4 实践环节:故意造成数据块丢失 
6.5 实践环节:杀死TaskTracker进程 
6.6 实践环节:杀死JobTracker 
6.7 实践环节:杀死NameNode进程 
6.8 实践环节:引发任务故障 
6.9 数据原因造成的任务故障 
6.10 实践环节:使用skip模式处理异常数据 
6.11 小结 

第7章 系统运行与维护 
7.1 关于EMR的说明 
7.2 Hadoop配置属性 
7.3 实践环节:浏览默认属性 
7.3.1 附加的属性元素 
7.3.2 默认存储位置 
7.3.3 设置Hadoop属性的几种方式 
7.4 集群设置 
7.4.1 为集群配备多少台主机 
7.4.2 特殊节点的需求 
7.4.3 不同类型的存储系统 
7.4.4 Hadoop的网络配置 
7.5 实践环节:查看默认的机柜配置 
7.6 实践环节:报告每台主机所在机柜 
7.7 集群访问控制 
7.8 实践环节:展示Hadoop的默认安全机制 
7.9 管理NameNode 
7.10 实践环节:为fsimage文件新增一个存储路径 
7.11 实践环节:迁移到新的NameNode主机 
7.12 管理HDFS 
7.12.1 数据写入位置 
7.12.2 使用平衡器 
7.13 MapReduce管理 
7.13.1 通过命令行管理作业 
7.13.2 作业优先级和作业调度 
7.14 实践环节:修改作业优先级并结束作业运行 
7.15 扩展集群规模 
7.15.1 提升本地Hadoop集群的计算能力 
7.15.2 提升EMR作业流的计算能力 
7.16 小结 

第8章 Hive:数据的关系视图 
8.1 Hive概述 
8.1.1 为什么使用Hive 
8.1.2 感谢Facebook 
8.2 设置Hive 
8.2.1 准备工作 
8.2.2 下载Hive 
8.3 实践环节:安装Hive 
8.4 使用Hive 
8.5 实践环节:创建UFO数据表 
8.6 实践环节:在表中插入数据 
8.7 实践环节:验证表 
8.8 实践环节:用正确的列分隔符重定义表 
8.9 实践环节:基于现有文件创建表 
8.10 实践环节:执行联结操作 
8.11 实践环节:使用视图 
8.12 实践环节:导出查询结果 
8.13 实践环节:制作UFO目击事件分区表 
8.13.1 分桶、归并和排序 
8.13.2 用户自定义函数 
8.14 实践环节:新增用户自定义函数 
8.14.1 是否进行预处理 
8.14.2 Hive和Pig的对比 
8.14.3 未提到的内容 
8.15 基于Amazon Web Services的Hive 
8.16 实践环节:在EMR上分析UFO数据 
8.16.1 在开发过程中使用交互式作业流 
8.16.2 与其他AWS产品的集成 
8.17 小结 

第9章 与关系数据库协同工作 
9.1 常见数据路径 
9.1.1 Hadoop用于存储档案 
9.1.2 使用Hadoop进行数据预处理 
9.1.3 使用Hadoop作为数据输入工具 
9.1.4 数据循环 
9.2 配置MySQL 
9.3 实践环节:安装并设置MySQL 
9.4 实践环节:配置MySQL允许远程连接 
9.5 实践环节:建立员工数据库 
9.6 把数据导入Hadoop 
9.6.1 使用MySQL工具手工导入 
9.6.2 在mapper中访问数据库 
9.6.3 更好的方法:使用Sqoop 
9.7 实践环节:下载并配置Sqoop 
9.8 实践环节:把MySQL的数据导入HDFS 
9.9 实践环节:把MySQL数据导出到Hive 
9.10 实践环节:有选择性的导入数据 
9.11 实践环节:使用数据类型映射 
9.12 实践环节:通过原始查询导入数据 
9.13 从Hadoop导出数据 
9.13.1 在reducer中把数据写入关系数据库 
9.13.2 利用reducer输出SQL数据文件 
9.13.3 仍是最好的方法 
9.14 实践环节:把Hadoop数据导入MySQL 
9.15 实践环节:把Hive数据导入MySQL 
9.16 实践环节:改进mapper并重新运行数据导出命令 
9.17 在AWS上使用Sqoop 
9.18 小结 

第10章 使用Flume收集数据 
10.1 关于AWS的说明 
10.2 无处不在的数据 
10.2.1 数据类别 
10.2.2 把网络流量导入Hadoop 
10.3 实践环节:把网络服务器数据导入Hadoop 
10.3.1 把文件导入Hadoop 
10.3.2 潜在的问题 
10.4 Apache Flume简介 
10.5 实践环节:安装并配置Flume 
10.6 实践环节:把网络流量存入日志文件 
10.7 实践环节:把日志输出到控制台 
10.8 实践环节:把命令的执行结果写入平面文件 
10.9 实践环节:把远程文件数据写入本地平面文件 
10.9.1 信源、信宿和信道 
10.9.2 Flume配置文件 
10.9.3 一切都以事件为核心 
10.10 实践环节:把网络数据写入HDFS 
10.11 实践环节:加入时间戳 
10.12 实践环节:多层Flume网络 
10.13 实践环节:把事件写入多个信宿 
10.13.1 选择器的类型 
10.13.2 信宿故障处理 
10.13.3 使用简单元件搭建复杂系统 
10.14 更高的视角 
10.14.1 数据的生命周期 
10.14.2 集结数据 
10.14.3 调度 
10.15 小结 

第11章 展望未来 
11.1 全书回顾 
11.2 即将到来的Hadoop变革 
11.3 其他版本的Hadoop软件包 
11.4 其他Apache项目 
11.4.1 HBase 
11.4.2 Oozie 
11.4.3 Whir 
11.4.4 Mahout 
11.4.5 MRUnit 
11.5 其他程序设计模式 
11.5.1 Pig 
11.5.2 Cascading 
11.6 AWS资源 
11.6.1 在EMR上使用HBase 
11.6.2 SimpleDB 
11.6.3 DynamoDB 
11.7 获取信息的渠道 
11.7.1 源代码 
11.7.2 邮件列表和论坛 
11.7.3 LinkedIn群组 
11.7.4 Hadoop用户群 
11.7.5 会议 
11.8 小结 


  本文关键词:Hadoop基础教程,由笔耕文化传播整理发布。



本文编号:104076

资料下载
论文发表

本文链接:https://www.wllwen.com/wenshubaike/mishujinen/104076.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户73fbf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com