当前位置:主页 > 论文百科 > 栽培种植论文 >

勾股定理的公式、证明及应用方法

发布时间:2018-04-24 02:12

  本文选题:勾股定理 + 公式 


勾股定理的介绍:

中文名:勾股定理

外文名:Pythagoras theorem 

别称:商高、毕达哥拉斯、百牛定理 

表达式:a²+b²=c² 

提出者:毕达哥拉斯  赵爽  商高 

提出时间:公元前551年 

应用学科:几何学 

适用领域范围:数学,几何学 

中国记载:《周髀算经》《九章算术》 

外国记载著作:《几何原本》 

限制条件:直角三角形

勾股定理的应用和证明方法

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。

勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a²+b²=c²这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理的公式:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是 ,那么可以用数学语言表达:

勾股定理是余弦定理中的一个特例。

勾股定理的证明方法:

加菲尔德证法

加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法”。

在直角梯形ABDE中,∠AEC=∠CDB=90°,△AEC≌△CDB,

加菲尔德证法

“总统证法”示意图

“总统证法”示意图

加菲尔德证法变式

该证明为加菲尔德证法的变式。

如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证 法。相反,若将上图中两个梯形拼在一起,就变为了此证明方法。

大正方形的面积等于中间正方形的面积加上四个三角形的面积,即:

勾股定理的应用方法:

小明学了勾股定理后很高兴,兴冲冲的回家告诉了爸爸:在△ABC中,若∠C=90°,,BC=a,AC=b,AB=c,如下图,根据勾股定理,则a2+b2=c2.爸爸笑眯眯地听完后说:很好,你又掌握了一样知识,现在考考你,若不是直角三角形,那勾股定理还成不成立?若成立,请说明理由;若不成立,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.(下图备用)

勾股定理的应用方法

答案: 解:①当三角形是锐角三角形时,

证明:作AD⊥BC垂足是D,设CD的长为x,

根据勾股定理得:b2-x2=AD2=c2-(a-x)2

整理得:a2+b2=c2+2ax

∵2ax>0

∴a2+b2>c2

 

②当三角形为钝角三角形时

证明:过B点作AC的垂线交AC于D点,设CD的长为y

在直角三角形ABD中,AD2=c2-(a+y)2

在直角三角形ADC中,AD2=b2-y2,

∴b2-y2=c2-(a+y)2

整理得:a2+b2=c2-2ay

∵2ay>0,∴a2+b2<c2.

勾股定理的应用方法2

所以:①在锐角三角形中,a2+b2>c2.

②在钝角三角形中,a2+b2<c2.  

解析: 根据题意要分锐角三角形、钝角三角形分别证明,作出它们的高,根据高是两个直角三角形的一个公用直角边,利用勾股定理作出证明.

勾股定理的补充资料:

勾股定理的简史:

中国

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

外国

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

勾股定理的意义:

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。



本文编号:1794668

资料下载
论文发表

本文链接:https://www.wllwen.com/wenshubaike/shenghuobaike/1794668.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户eb71f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com