水泥缓凝剂配方
本文关键词:水泥缓凝剂,由笔耕文化传播整理发布。
水泥缓凝剂配方分析
苏州禾川化工科技有限公司,权威机构专业为企业提供技术解决方案,禾川化工致力于水泥缓凝剂成分分析,水泥缓凝剂配方还原,水泥缓凝剂成分表分析,水泥缓凝剂配样检测,水泥缓凝剂配方研制,水泥缓凝剂技术开发,水泥缓凝剂配方开发,水泥缓凝剂技术还原,水泥缓凝剂技术解析,水泥缓凝剂配方参考,水泥缓凝剂成分表实例、禾川成分分析、禾川配方分析、禾川配方剖析、禾川配方还原、禾川技术开发、禾川标准检测、禾川工业诊断、禾川技术支持。禾川技术咨询,禾川化工,专一专注
缓凝剂是一种能推迟水泥水化反应,从而延长混凝土的凝结时间,使新拌混凝土较长时间保持塑性,方便浇注,提高施工效率,同时对混凝土后期各项性能不会造成不良影响的外加剂。
1.缓凝剂的概念缓凝剂种类很多,常用的主要有:木质素磺酸盐及其衍生物、低分子量纤维素及其衍生物、羟基羧酸(盐)、有机膦酸(盐)、硼酸(盐)、复合物等。近年来,国内外针对原有缓凝剂存在的缺陷进行了不断改进,也新开发了一些缓凝剂。
具体可用作缓凝剂的物质有:糊精、各种类型的淀粉、干酪素以及某些含蛋白的物质;还有蔗糖、葡萄糖、木质磺酸钙盐或钠盐、羧甲基纤维素钠(CMC)、羧乙基纤维素(CHC)以及他们的混合物;另外还有酒石酸、酒石酸钾、酒石酸钙、二水硫酸钙、亚硫酸钙、硫酸亚铁、硼酸、硼酸和酒石酸的混合物、酒石酸和碳酸氢钠的混合物、六偏磷酸钠、磷酸、磷酸二纳、磷酸三纳、磷酸四纳、磷酸氢二钠、焦磷酸钠、烷基磷酸脂、乙二胺四乙酸二钠、各种腐植酸等。
2.缓凝剂机理一般来说,有机类缓凝剂大多对水泥颗粒以及水化产物新相表面具有较强的活性作用,吸附于固体颗粒表面,延缓了水泥和浆体结构的形成。无机类缓凝剂,往往是在水泥颗粒表面形成一层难溶的薄膜,对水泥颗粒的水化起屏障作用,阻碍了水泥的正常水化。这些作用都会导致水泥的水化速度减慢,延长水泥的凝结时间。缓凝剂对水泥缓凝的理论主要包括吸附理论、生成络盐理论、沉淀理论和控制氢氧化钙结晶生产理论。多数有机缓凝剂有表面活性,它们在固液界面产生吸附,改变固体粒子表面性质,即亲水性。由于吸附作用,它们分子中的羟基在水泥粒子表面,阻碍水泥水化过程,使晶体相互接触受到屏蔽,改变了结构形成过程。如葡萄糖吸附在C3S表面生成吸附膜,因此掺0.1﹪葡萄糖是水泥凝结时间延长70﹪。
对羟基羧酸及其盐的缓凝作用,用络合物理论解释更为合适。因为羟基羧酸盐是络合物形成剂,能于过渡金属离子形成稳定的络合物,而与碱土金属离子只能在碱性介质中形成不稳定络合物。正因为如此,羟基羧酸及其盐类能与水泥中的钙离子形成不稳定络合物,在水化初期控制了液相中的钙离子的浓度,产生缓凝作用,随水化过程的进行,这种不稳定的络合将会破坏,这样水化将继续正常进行。
缓凝剂分子在水泥离子上的吸附层的存在,使分子间的作用力保持在厚的水化层表面上,使水泥悬浮体也有分散作用。它们不但在原胶凝物质的粒子表面吸附,而且在水化和硬化过程中吸附在新相的晶胚上,并使其稳定。这种稳定作用组织结构形成过程,,并降低早期强度。缓凝剂不仅由于在原化合物和最终化合物上的吸附作用,而且由于改变了饱和溶液中晶胚生成的速度,因此控制了胶凝物上的吸附作用,而且由于改变了饱和溶液中晶胚生成的速度,因此控制了胶凝物的水化和硬化过程。无论是使用何种缓凝剂,在水泥水化继续进行过程中,由于水泥粒子的膨胀引起吸附层分子之间的空隙扩大或膜层破裂,因此水化作用可照常进行。这样对后期强度的发展几乎没有坏的影响,在合理掺量范围内(0.01﹪~0.20﹪)甚至可以增加后期强度。
缓凝作用的机理另一观点认为,缓凝剂吸附在氢氧化钙核上,抑制了其继续生长,在达到一定过饱和度之前,氢氧化钙的生长将停止。这个理论中重点放在缓凝剂在氢氧化钙上的吸附,而不是在水化产物上吸附。但是,研究表明仅仅抑制或改变氢氧化钙生长状态不足引起缓凝,而更重要的是缓凝剂子在水化的C3S上的吸附。
3.缓凝剂的分类缓凝剂的种类按其化学成可分为无机缓凝剂和有机缓凝剂两大类。从分子量的大小或合成方法的角度可以分为两大类:有机化合物和聚合物。研究较多的有机物主要是有机膦酸(盐)。用作缓凝剂的聚合物通常是低聚物,其分子量一般为数千,多通过共聚反应制得,研究较多的聚合物是含有羧基、膦酸基、磺酸基的聚合物。相对来说,羟基羧酸(盐)、有机膦酸(盐)等有机物类缓凝剂掺量较少,但比较敏感;而聚合物类缓凝剂掺量较大,但掺量与稠化时间线性关系较好。
3.1无机缓凝剂1)磷酸盐、偏磷酸盐类缓凝剂
磷酸盐、偏磷酸盐类缓凝剂是近年来研究较多的无机缓凝剂。正磷酸(H3PO4 ) 的缓凝作用并不大,但各种磷酸盐的缓凝作用却较强。在相同掺量情况下,磷酸盐类缓凝剂中缓凝作用最强的是焦磷酸钠(Na2P2O7 ) 。
2)硼砂(Na2B4O7·10H2O)
吸湿性强,易溶于水和甘油,水溶液呈弱碱性,在干燥的空气中易缓慢风化。
3)氟硅酸钠(Na2SiF6 )
白色结晶物质,密度2.68g·cm-3,微溶于水,不溶于乙醇,有腐蚀性,一般掺量为水泥用量的0.1-0.2%。
有机膦酸(盐)种类繁多,有不少品种适合用作油井水泥缓凝剂。
实例一: 将甲撑膦酸衍生物用作超细水泥缓凝剂,使用温度可达116℃以上。
实例二: 将甲撑膦酸衍生物和硼砂按(0.025-0.2):1质量比复配用作高温缓凝剂,甲撑膦酸衍生物选自乙二胺四甲叉膦酸钙、乙二胺四甲叉膦酸钠、乙二胺五甲叉膦酸。该缓凝剂适用温度121-260℃(BHST),适合长封固段高温深井固井。
实例三: 将有机膦酸(盐)和无机磷酸(盐)按一定比例复配用作缓凝剂,此外,也可加入缓凝增强剂以扩大应用温度范围。一个推荐的缓凝剂组成如下:10-15%的乙二胺四甲叉膦酸钠钙,40-45%的磷酸以及40-50%缓凝增强剂。
该缓凝剂有效使用温度为70-140℃。
实例四: 合成羟基二胺甲叉膦酸用作高温缓凝剂,使用温度范围50-170℃。实例2:以一种不饱和胺类化合物与亚磷酸、甲醛反应生成烷撑膦酸盐作为缓凝剂,使用温度范围40-170℃,综合性能优于用二甲胺与亚磷酸、甲醛的合成产物。
3.3.聚合物类缓凝剂 聚合物类缓凝剂是近年来国内外研究最的一类缓凝剂。由于通过聚合技术可将多种不同的功能性单体结合在一起,而且可以控制分子链的长短、分子量的大小及分布,因此这类缓凝剂可以用分子设计思想来指导其合成,
得到综合性能较为理想的缓凝剂。
1)AMPS/AA二元共聚物
实例一:共聚物中AMPS摩尔分数为40-60%,分子量小于5,000。该缓凝剂使用温度可达121℃,掺量为0.3-1.5%BWOC,在66-118℃区间稠化实验规律较好,稠化时间容易调节。
实例二:共聚物中AMPS的摩尔分数达到65-85%时,是一个良好的中低温缓凝剂。
实例三:AMPS/AA共聚物与木质素磺酸盐、硼砂、有机酸等其它缓凝剂复配使用可扩大温度应用范围,如与酒石酸钠复配使用后其使用温度可达260℃。
2) AMPS/IA二元共聚物
实例一:共聚物中AMPS与IA的摩尔分数比为73:27。该缓凝剂缓凝效果明显强于AMPS/AA缓凝剂,无需加入硼砂、有机酸等缓凝增强剂,单独使用温度可达260℃。
3)其它含羧基的二元或三元共聚物:
实例一:AMPS/MA、AMPS/IA/AA、AMPS/IA/AM等。
3.3.2其它聚合物1)含磺酸和羧酸基团的聚合物:
实例一:苯乙烯磺酸/马来酸酐二元共聚物,该聚合物在有机酸等缓凝增强剂协同作用下,缓凝温度可高达302℃。
2)含膦酸和羧酸基团的聚合物:
实例一:由“-[CHCOOH-CH2-POOH-CH2-CHCOOH]-”重复结构单元组成的聚合物,分子量为4,000左右,使用温度范围为93-232℃。
3)接枝聚合物:
实例一:主链为糖类(包括其水解产物羟基羧酸),推荐山梨(糖)醇、葡糖酸、酒石酸等;侧链为乙烯系共聚物,共聚单体推荐AA、AMPS、乙烯基膦酸等,分子量为1000-15000,使用温度达121℃以上。
实例二:主链为缩聚物,推荐丙酮/甲醛/亚硫酸钠缩聚物;侧链为羧酸/磺酸共聚物,羧酸单体推荐AA、IA、MA等,磺酸单体推荐AMPS;使用温度可达177℃。
4.应用实例
组分
投料量(g/L)
葡萄糖酸
100~200
柠檬酸
200~300
三聚磷酸钠
10~50
焦磷酸钠
10~50
水泥
500~700
5市面常见缓凝剂
醇类缓凝剂(甲醇、乙醇、丙醇、乙二醇、丙二醇、甘油)、水溶性聚乙烯醇缓凝剂、多元醇衍生物--糖类缓凝剂、含羧酸(盐)基缓凝剂(柠檬酸、苹果酸、酒石酸、水杨酸)、羟基羧酸盐和氨基羧酸盐有机物型缓凝剂(葡萄糖酸钠、脂肪族羟基羧酸盐如柠檬酸钠(柠檬酸三钠)、酒石酸钾钠、敌绣钠)有机胺及衍生物缓凝剂(十六胺、α---十八胺、三乙醇胺、二乙醇胺)、磷酸盐及膦酸盐缓凝剂(焦磷酸钠、六偏磷酸钠、三聚磷酸钠、亚甲基膦酸、同碳二膦酸)、硼酸和硼酸盐缓凝剂(硼酸、硼砂)锌盐缓凝剂(氯化锌、硫酸锌、碳酸锌、硝酸锌)、其它缓凝剂(如硫酸亚铁、氟硅酸钠、碳酸亚铁、纤维素醚、硫酸镉)
阅读更多相关内容:
相关技术
本文关键词:水泥缓凝剂,由笔耕文化传播整理发布。
本文编号:48783
本文链接:https://www.wllwen.com/wenshubaike/xingzhengshiwu/48783.html