基于概念层次的网络挖掘技术
[Abstract]:Concept hierarchy (Concept Hierarchy) refers to the organization of a large number of concepts in a hierarchical way, so that the meaning of the child concept is more special than its father, and can be summarized by its father concept. The hierarchical conceptual model is different from the ordinary plane conceptual model. In such a model, the distance between concepts is not uniform. From this distance, we can measure the similarity between concepts. Such a model can construct a standard that is closer to reality, which makes the classification, clustering, matching and other work based on this model more reasonable. The establishment of conceptual hierarchy implements a hierarchical standard. By mapping other elements (such as words, query requests, documents) to concepts, you can establish connections between these elements, and these connections contain semantic information. The concept of hierarchical organization is a very common problem in network mining, and many application scenarios are based on such an idea. The work of this topic is roughly divided into three parts. Starting from the bottom layer, we try to mine a conceptual hierarchy model with accurate concept description and reasonable hierarchical division from the end of the network information. Based on the popular socialized tagging, we design a set of methods to extract concepts from socialized tagging data and establish hierarchical relationships. Based on the concept level, we also explore its application in network mining. In order to solve the problem of keyword recommendation in search engine advertising service, we propose a method to improve the coverage and accuracy of recommendation by using the conceptual level. Finally, considering the large scale of the concept level itself, we also hope to apply some visual technology to show the whole picture of the concept level to the user intuitively. Our method is embodied in showing the internal relationship at the conceptual level and its own structure, and has achieved good results.
【学位授予单位】:上海交通大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:TP311.13
【共引文献】
相关期刊论文 前3条
1 刘伟;孟小峰;孟卫一;;Deep Web数据集成研究综述[J];计算机学报;2007年09期
2 周琼;;Deep web结构化数据集成研究综述[J];科技信息;2009年09期
3 谭春亮;甘丹;陈丽娜;蒋运承;;基于Tabu的Deep Web特征选择算法[J];计算机工程与设计;2008年13期
相关博士学位论文 前5条
1 张慧斌;Deep Web查询接口及查询结果抽取研究[D];南开大学;2010年
2 聂铁铮;Deep Web中Web数据库集成关键技术的研究[D];东北大学;2009年
3 寇月;Deep Web实体搜索的关键技术研究[D];东北大学;2009年
4 黄健斌;基于条件概率图模型的Deep Web数据抽取与集成研究[D];西安电子科技大学;2007年
5 赵朋朋;Deep Web信息集成若干关键技术研究[D];苏州大学;2008年
相关硕士学位论文 前10条
1 张智;基于本体的Deep Web数据源的分类研究[D];南京信息工程大学;2011年
2 王彩亮;云存储环境下数据副本管理策略研究[D];云南大学;2011年
3 罗斐;基于本体的Deep Web数据源分类和查询接口模式抽取[D];南京航空航天大学;2010年
4 李海滨;Deep Web动态搜索的研究[D];北京化工大学;2011年
5 屈振东;Deep Web环境下数据源选择和结果缓存的研究[D];东北大学;2009年
6 郑冬冬;DeepWeb信息集成系统关键技术研究[D];苏州大学;2006年
7 高岭;Deep Web分类搜索引擎关键技术研究[D];苏州大学;2007年
8 陈琛;基于社会化标签的个性化搜索研究[D];扬州大学;2008年
9 李文骏;Deep Web数据源发现和语义标注技术研究[D];苏州大学;2008年
10 王波;Deep Web数据库选择和查询转换技术研究[D];大连理工大学;2009年
,本文编号:2473706
本文链接:https://www.wllwen.com/wenyilunwen/guanggaoshejilunwen/2473706.html