基于细胞三维受控组装技术的细胞芯片构建研究
发布时间:2018-06-10 16:20
本文选题:细胞芯片 + 细胞组装 ; 参考:《杭州电子科技大学》2012年硕士论文
【摘要】:生命科学、信息科学与制造科学相结合,是二十一世纪科技发展的重要趋势。基于先进制造和组织工程理论的细胞三维受控组装技术,以及基于微加工技术和传感器技术的细胞芯片技术,为组织工程、药物筛选、环境监测等研究领域拓展了新的理论和技术空间。本文将细胞三维受控组装技术引入细胞芯片的制作中,探讨细胞三维受控组装与细胞芯片技术结合的技术方案。 首先,论文对细胞可控装配技术和细胞芯片的国内外研究现状进行了综述,系统分析了细胞组装技术和细胞芯片技术结合的理论和技术可能。基于细胞组装的技术特征和细胞传感器的工作原理,选取了MEA传感器和细胞电阻抗分析器,并对其参数、选材和制作过程进行了研究,设计并制作了适合组装细胞的集成型细胞芯片。对芯片性能的测试显示,芯片能在低频段显示出良好的阻抗性,保证较好的导电性能,在高频段显示良好的容性,对测试细胞电生理活性具有良好的灵敏度。 然后,论文详细分析了细胞三维受控组装机的构架,并对喷头模块进行扩展和改进。面向芯片表面细胞装配,选取了适合芯片电生理检测的生物混合材料,并对材料的配比进行了系统研究。在此基础上,研究了基质材料与细胞芯片的结合特性:成形和固化特性、与芯片基底结合的稳定性、材料对细胞电化学检测的影响。 其次,根据集成型细胞芯片的结构特点研究了细胞在芯片表面的组装路径,确定了最佳方案。在此基础上,研究了成形参数、喷头大小和交联方式对组装结构的整体性、基质材料连续性及其粘结性和微丝直径大小的影响。结果显示,细胞可以按照设计的模式准确组装到指定传感器区域,路径连贯稳定,与芯片的粘结性良好,微丝直径符合组装精度要求。 最后,比较了DMEM、PBS溶液相比氰铁化钾溶液作为芯片测试液的差异,结果显示DMEM可在高频段作为芯片测试的电解液。随后我们在芯片上组装了多种细胞,结果显示用细胞三维受控组装技术能精确地将不同细胞组装到细胞芯片表面的传感器区域,细胞芯片测得的细胞增殖情况与标准的生化检测方法测得的情况一致,细胞芯片能准确的测得并分辨不同细胞增殖情况,芯片在药物筛选、病理研究等领域显示出巨大的应用价值。
[Abstract]:The combination of life science, information science and manufacturing science is an important trend in the development of science and technology in 21 century. Three-dimensional controlled cell assembly technology based on advanced manufacturing and tissue engineering theory, and cell chip technology based on microprocessing and sensor technology, for tissue engineering, drug screening, Environmental monitoring and other research fields have expanded the new theoretical and technical space. In this paper, the cell three-dimensional controlled assembly technology is introduced into the fabrication of cell chip, and the technical scheme of cell three-dimensional controlled assembly and cell chip technology is discussed. This paper summarizes the research status of cell controlled assembly technology and cell chip at home and abroad, and systematically analyzes the theory and technology possibility of cell assembly technology and cell chip technology combination. Based on the technical characteristics of cell assembly and the working principle of cell sensor, MEA sensor and cell impedance analyzer are selected, and their parameters, material selection and fabrication process are studied. An integrated cell chip suitable for assembly cells was designed and fabricated. The chip performance test shows that the chip can display good impedance in low frequency band, ensure good conductivity, good capacitance in high frequency band, good sensitivity to test cell electrophysiological activity. The architecture of cell three-dimensional controlled assembly machine is analyzed in detail, and the nozzle module is extended and improved. For cell assembly on chip surface, biological mixture materials suitable for chip electrophysiological detection were selected, and the proportion of materials was studied systematically. On the basis of this, the binding properties of matrix material and cell chip are studied: forming and solidifying characteristics, stability of binding to chip substrate, influence of material on cell electrochemical detection. According to the structural characteristics of the integrated cell chip, the cell assembly path on the chip surface was studied, and the optimal solution was determined. On this basis, the effects of forming parameters, nozzle size and crosslinking mode on the integrity of the assembly structure, the matrix material continuity, its adhesion and the diameter of the microfilament were studied. The results show that the cells can be accurately assembled to the designated sensor area according to the designed mode, the path is coherent and stable, the adhesion to the chip is good, and the diameter of the microfilament meets the requirements of the assembly accuracy. The difference between DMEMN PBS solution and potassium cyanide solution as chip test solution was compared. The results showed that DMEM could be used as electrolyte for chip test in high frequency range. We then assembled a variety of cells on the chip, and the results showed that the three dimensional controlled cell assembly technique could accurately assemble different cells into the sensor area on the surface of the cell chip. The cell proliferation measured by the cell chip is consistent with that measured by the standard biochemical method. The cell chip can accurately measure and distinguish the proliferation of different cells, and the microarray is in drug screening. Pathological research and other fields have shown great application value.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R329
【参考文献】
相关期刊论文 前10条
1 张安兄,吕德龙,钟伟,程为庄,杜强国;天然生物材料构建组织工程支架的研究进展[J];北京生物医学工程;2005年05期
2 徐莹;杨勇;邹绍芳;王平;;基于微加工技术的集成细胞芯片的实验研究[J];传感技术学报;2008年06期
3 裴莹;郑学晶;汤克勇;;胶原及明胶基天然高分子复合材料研究进展[J];高分子通报;2010年02期
4 刘根起,赵晓鹏;明胶-海藻酸钠半互穿聚合物网络膜及其电刺激响应行为的研究[J];功能材料;2003年04期
5 崔俊锋,尹玉姬,张福江,叶芬,姚康德;明胶基生物材料在组织工程中的应用[J];国外医学.生物医学工程分册;2004年01期
6 刘海霞,颜永年,王小红,熊卓,程捷;肝细胞的三维受控组装[J];清华大学学报(自然科学版);2005年08期
7 刘丰;张人佶;颜永年;刘海霞;;明胶/海藻酸钠组织工程支架的快速成形[J];清华大学学报(自然科学版);2006年08期
8 展义臻;朱平;董朝红;郭肖青;;海藻酸共混纤维的发展现状[J];染整技术;2006年12期
9 韦晓兰,莫志宏;细胞传感器与芯片的研究进展[J];生物化学与生物物理进展;2004年09期
10 王秋君;徐铭恩;李艳蕾;袁梅娟;胡金夫;;一种基于混流控制的多细胞三维受控组装系统[J];生物医学工程学杂志;2011年05期
,本文编号:2003839
本文链接:https://www.wllwen.com/xiyixuelunwen/2003839.html
最近更新
教材专著