基于NKG2D在安多霖保护微波辐射致免疫损伤中的作用机制研究
[Abstract]:Purpose and significance
With the wide application of microwave technology in military, medical, industrial, communication and agricultural production, organisms are inevitably affected by microwave radiation. Studies have shown that microwave radiation can damage many systems of organisms, and its damage to the immune system and medical protection is one of the hotspots of bioelectromagnetism in recent years. 1. However, the mechanism of microwave-induced immune damage is unknown, and there is no effective drug to prevent microwave-induced immune damage at present. The purpose of this paper is to study the preventive effect and effective dosage of andolin on microwave-induced immune damage, and to explore the role of NKG2D, an important activator receptor of NK cells, in this process, and its effect on N. The role of KG2D/ERK signaling pathway in microwave-induced immune injury is studied, which provides theoretical basis for elucidating the mechanism of microwave-induced immune injury and for the selection and application of effective protective drugs.
Materials and methods
The research is divided into two parts: the whole animal experiment and the in vitro cell experiment.
Firstly, 250 male Wistar rats were divided into two weeks and four weeks prophylaxis test. 125 rats were randomly divided into normal control group, radiation control group and 0.75, 1.5, 3 g / (kg d) drug group. After 2 or 4 weeks of continuous administration, 30 mW / cm 2 microwave irradiation for 15 minutes, 6 h, 7 d, 14 d after radiation (withdrawal), blood cell analyzer was used. The number of white blood cells and lymphocytes in peripheral blood were detected. The serum levels of IL-2 and IL-4 were detected by radioimmunoassay. The peripheral blood CD3, CD4 and CD8 lymphocyte subsets (calculated CD4 +/CD8 +) were detected by flow cytometry. The histological and ultrastructural changes of thymus and spleen were observed by light and electron microscopy. The expression of NKG2D protein in spleen was detected by Western Blot.
2. In vitro cell experiment 1. NK92 cells were randomly divided into sham radiation group and 10,30,50 mW/cm 2 radiation group. NK92 cells were irradiated with 10,30,50 mW/cm 2 microwave for 5 minutes. The morphology of NK92 cells was observed by inverted phase contrast microscope at 1 h and 24 h after irradiation. Cell apoptosis, necrosis and cell cycle were detected by flow cytometry. NK92 cells were detected by lactate dehydrogenase method. NK92 cells were injured by microwave irradiation for 5 min, 1 h, 6 h and 12 h after irradiation. Real-time PCR, Western Blot and image analysis were used to detect the expression of NKG2D, perforin protein and mRNA, as well as ERK1/2, p-ERK1/2. The expression of ERK1/2, p-ERK1/2 and perforin was detected by Western Blot 1 hour after U0126 intervention and microwave irradiation.
experimental result
1. Changes of immune function in peripheral blood of rats: The number of white blood cells and the ratio of CD4~+/CD8~+ in peripheral blood were significantly decreased 14 days after 30 mW/cm2 microwave irradiation (p0.05 or p0.01), and the number of lymphocytes, white blood cells and the ratio of CD4~+/CD8~+ were significantly increased 14 days after irradiation (p0.05 or p0.01). There was no significant difference in peripheral blood leukocyte and lymphocyte counts between the two groups. There was no significant difference in serum IL-2 and IL-4 concentrations between the two groups.
2. Histological and ultrastructural changes of thymus and spleen in rats: 2 weeks after 30 mW/cm2 microwave irradiation, the histological changes of thymus were slight, and the pathological changes of thymus were restored 7 days after irradiation; 6 hours and 7 days after microwave irradiation, the chromatin of lymphocyte nucleus of white pulp was condensed, condensed, margined, the demarcation between red pulp and white pulp was unclear, and the blood sinus of red pulp was congested 14 days after irradiation. The histological structure of thymus and spleen in the drug group was similar to that in the radiation control group. The histological and ultrastructural damage of thymus and spleen in the 1.5 and 3 g / (kg d) drug group was significantly alleviated. The rule is similar to that of 2W preventive test.
Third, the expression of NKG2D in spleen tissue of rats: 6 hours after 30 mW/cm~2 microwave irradiation, the expression of NKG2D in spleen tissue was significantly lower than that of normal control group (p0.01), and the expression of NKG2D in 1.5, 3 g/(kg d) drug group was significantly higher than that of radiation control group (p0.05 or p0.01). There was no significant difference between 0.75 g/(kg d) drug group and radiation control group.
Fourthly, NK92 cell morphology, apoptosis and necrosis rate, cell cycle changes: compared with sham radiation group, 1 h, 10, 30, 50 mW / cm 2 group cells outline irregular, refractive decreased, G0 / G1 phase cell percentage significantly increased (p0.01), S phase cell percentage significantly decreased (p0.05 or p0.01), cell necrosis rate increased (p0.05 or p0.01); The percentage of apoptotic cells in phase I was also significantly increased (p0.05 or p0.01), and the apoptotic rate was increased (p0.05 or p0.01). The apoptotic rate in 30,50 mW/cm~2 group was higher than that in sham radiation group at 24 h, 30,50 mW/cm~2 group (p0.05).
Fifth, NK92 cell killing activity changes: 1 hour after radiation, 30,50 mW/cm 2 group NK92 cell killing activity to K562 cells was significantly lower than the sham radiation group (p0.01), 10 mW/cm~2 group and sham radiation group compared with no significant difference.
6. Changes of NKG2D protein and gene expression in NK92 cells: At 6 hours after 30 mW/cm~2 microwave irradiation, NKG2D mRNA and protein expression in NK92 cells decreased significantly (p0.05 or p0.01). There was no significant difference between the two groups at 12 hours after irradiation.
Seventh, the expression of NKG2D-activated effector molecule perforin protein and gene in NK92 cells: 1 hour after 30 mW/cm 2 microwave irradiation, the expression of perforin mRNA in NK92 cells decreased significantly (p0.05), 1 hour and 6 hours after irradiation (p0.05 or p0.01).
Eighth, the expression of p-ERK1/2 in NK92 cells: 1 hour after 30 mW/cm~2 microwave irradiation, the expression of p-ERK1/2 in NK92 cells was significantly lower than that in sham irradiation group (p0.01). The expression of p-ERK1/2 was not significantly different from that in sham irradiation group at 6 and 12 hours after irradiation.
Ninth, the expression of p-ERK1/2 and perforin after U0126 intervention: After U0126 intervention and 30 mW/cm~2 microwave irradiation, the expression of p-ERK1/2 and perforin in NK92 cells was significantly lower than that in the radiation group (p0.05 or p0.01).
conclusion
First, prophylactic administration of 1.5, 3 g / (kg d) andolin for 2 or 4 weeks has protective effects on immune function and structural damage of immune organs induced by 30 mW/cm~2 microwave irradiation, but prophylactic administration of 0.75 g / (kg d) andolin for 2 or 4 weeks has no obvious protective effects.
Secondly, there was no significant difference in the preventive effect between two weeks or four weeks of continuous administration; the best effective preventive dose of andolin for microwave-induced immune damage was 1.5 g / (kg d); and the best period of administration was two weeks.
Third, 30,50 mW/cm~2 microwave irradiation could damage NK92 cells, which showed irregular cell morphology, increased apoptosis and necrosis rate, decreased proliferation and killing activity. 10 mW/cm~2 microwave irradiation had no significant effect on apoptosis and killing activity of NK92 cells.
Four, 30mW/cm~2 microwave radiation can cause the decrease of NKG2D and perforin protein and gene expression.
Fifthly, the activation of ERK signaling pathway after microwave irradiation can positively regulate the expression of perforin in NK92 cells, and the activation of NKG2D/ERK/perforin pathway is inhibited by microwave irradiation.
Sixthly, the preventive effect of andolin on microwave-induced immune injury may be achieved by promoting NKG2D expression and activating NKG2D/ERK/perforin signaling pathway.
【学位授予单位】:中国人民解放军军事医学科学院
【学位级别】:博士
【学位授予年份】:2012
【分类号】:R363
【相似文献】
相关期刊论文 前10条
1 余明东;袁萍;何杰颖;文红玲;王友良;李东阳;;全氟辛烷磺酸对SD大鼠的免疫损伤作用[J];中南医学科学杂志;2011年02期
2 郝述霞;王春燕;齐雪松;张伟;张翠兰;吕慧敏;;安多霖对高功率微波照射大鼠性激素和氧化还原系统的影响[J];辐射防护;2011年05期
3 李凤铭;李雪雁;乔国勇;栗军香;;加味玉屏风散在~(60)Co γ射线致小鼠免疫损伤中的应用研究[J];现代中西医结合杂志;2011年23期
4 李洪杰;黄志远;;以上腹痛为主要表现的肺炎一例[J];中国疗养医学;2011年07期
5 郝建梅;李幸仓;王显著;陈香妮;;疏络化纤颗粒治疗大鼠肝纤维化的药效学研究[J];中西医结合肝病杂志;2011年03期
6 梁亚浩;刘光陵;;儿童肾病综合征免疫功能状态的研究进展[J];中国全科医学;2011年24期
7 高鹏;白厚桥;;小儿过敏性紫癜36例临床分析[J];中国医学文摘(皮肤科学);2011年04期
8 伍红良;高延永;庾俊雄;陶赞英;刘强和;何晓松;耿宛平;;经鼻内镜鼻窦术后自控静脉镇痛对血浆IL-6、IL-10的影响[J];山东大学耳鼻喉眼学报;2011年04期
9 李洪宇;王丽明;;急性暴发性心肌炎诊治一例[J];医学信息(上旬刊);2011年06期
10 李元喜;;中医药治疗过敏性紫癜的临床研究进展[J];内蒙古中医药;2010年13期
相关会议论文 前10条
1 廖吕燕;马玉芳;李健;黄一帆;;“芪苓”制剂多糖对免疫损伤小鼠免疫功能的影响[A];中国畜牧兽医学会2010年学术年会——第二届中国兽医临床大会论文集(上册)[C];2010年
2 廖吕燕;马玉芳;李健;黄一帆;;“芪苓”制剂多糖对环磷酰胺免疫损伤小鼠肠道菌群的影响[A];中国畜牧兽医学会2010年学术年会——第二届中国兽医临床大会论文集(下册)[C];2010年
3 邓永贵;郝咏梅;王绵;;胰岛免疫损伤与老年2型糖尿病[A];中华医学会第六次全国内分泌学术会议论文汇编[C];2001年
4 陈永艳;孙lm;魏海明;田志刚;;NK/NKG2D依赖途径介导HBV转基因鼠肝脏免疫损伤的高度敏感性[A];第六届全国免疫学学术大会论文集[C];2008年
5 李瑾;;外源性阿片类物质免疫损伤的研究进展[A];第四届全国中西医结合戒毒学术研讨会教材、论文摘要集[C];2000年
6 徐鹭英;潘建基;郑崴;杨凌;林少俊;张瑜;张春;林色南;陈传本;吴君心;;安多霖胶囊配合放射治疗鼻咽癌增效作用的研究[A];2007第六届全国放射肿瘤学学术年会论文集[C];2007年
7 刘开云;郭刚;邹全明;;幽门螺杆菌碳酸酐酶诱发的胃黏膜免疫损伤作用研究[A];中华医学会第七次全国消化病学术会议论文汇编(上册)[C];2007年
8 刘剑刚;史大卓;马鲁波;王永炎;;免疫损伤所致兔动脉粥样硬化血瘀模型的病理形态改变[A];第六次全国中西医结合血瘀证及活血化瘀研究学术大会论文汇编[C];2005年
9 李凤铭;;玉屏风散预防放射致小鼠T细胞免疫损伤的研究[A];第六届全国免疫学学术大会论文集[C];2008年
10 董霁;彭瑞云;王水明;高亚兵;陈建魁;胡文华;马俊杰;王丽峰;王旭;;安多霖对微波辐射致大鼠外周血细胞和生化指标的影响[A];第十一届中国体视学与图像分析学术会议论文集[C];2006年
相关重要报纸文章 前10条
1 记者 张颖;全国首个抗辐射中药安多霖胶囊入选国家“863计划”[N];福建日报;2007年
2 罗刚;多方面免疫损伤是SARS重要发病机理[N];健康报;2007年
3 余立;国内首个抗辐射中药入选“863”计划[N];医药经济报;2007年
4 河北省畜牧兽医站 李志民 研究员;注射了疫苗 家禽为啥还得病[N];河北科技报;2006年
5 纪菁;免疫力过高过低都有害[N];医药经济报;2003年
6 刘文山;何谓乙肝肾[N];家庭医生报;2006年
7 本版编辑邋本报记者 刘远芬 艾苏;ALD发病率悄然上升[N];医药经济报;2008年
8 辽宁省锦州市传染病院 主任医师 王振坤;乙肝病毒(HBV)的特性[N];家庭医生报;2004年
9 赵鸿;消炎保肝因人而异[N];大众卫生报;2007年
10 林 文;人体免疫力越高越好吗?[N];中国质量报;2004年
相关博士学位论文 前10条
1 李静;基于NKG2D在安多霖保护微波辐射致免疫损伤中的作用机制研究[D];中国人民解放军军事医学科学院;2012年
2 高桂新;感冒双解合剂抗流感病毒感染小鼠免疫损伤的机制研究[D];北京中医药大学;2004年
3 袁梦华;吡格列酮对STZ诱导的糖尿病大鼠心血管和骨骼肌免疫损伤的保护作用[D];天津医科大学;2010年
4 姜萍;调心饮对冠心病免疫损伤的干预研究[D];山东中医药大学;2004年
5 刘叶;清热化湿透表法干预小鼠流感病毒性湿热证免疫损伤的机理研究[D];广州中医药大学;2008年
6 张耀;CD8~+T细胞K~+、Ca~(2+)离子通道与乙型重型肝炎免疫调控机制的相关性研究[D];第三军医大学;2008年
7 秦薇;不同限制性输液方案复苏孕兔非控制性失血性休克的研究[D];南方医科大学;2008年
8 胥韦;H5N1禽流感病毒HA蛋白的免疫损伤致病机制研究[D];广州医学院;2009年
9 李锐;小胶质细胞介导多巴胺能神经元损伤的机制及干预研究[D];第四军医大学;2004年
10 蒋丽敏;黄芪对柯萨奇B_(3m)病毒感染所致小鼠心肌炎心肌穿孔素mRNA表达和免疫损伤的影响[D];中国医科大学;2003年
相关硕士学位论文 前10条
1 李威娜;小鼠骨髓间充质干细胞对免疫损伤卵巢的修复[D];暨南大学;2011年
2 周林;考虑非溶解治愈和免疫损伤的乙肝病毒模型分析[D];西南大学;2012年
3 游曙铭;青秦液对高尿酸血症模型大鼠关节免疫性病理损伤的修复作用研究[D];北京中医药大学;2009年
4 黄艳秋;应激损伤相关信号链与精神疾病中的免疫损伤机制研究[D];北京协和医学院;2012年
5 葛南海;抑制JAK3激酶的活化对H5N1病毒HA蛋白介导的小鼠外周免疫器官损伤的保护作用[D];广州医学院;2009年
6 邵国军;大气颗粒物PM_(2.5)对大鼠呼吸系统免疫损伤机制研究[D];兰州大学;2006年
7 田云梅;高原低氧免疫损伤及其干预措施的研究[D];中国人民解放军军事医学科学院;2009年
8 朱曼迪;独活对阿尔茨海默病模型大鼠免疫损伤干预作用的实验研究[D];辽宁中医药大学;2009年
9 陈东东;重症急性胰腺炎免疫损伤不同分期的特点与免疫调节剂应用效果研究[D];兰州大学;2011年
10 边U
本文编号:2219032
本文链接:https://www.wllwen.com/xiyixuelunwen/2219032.html