神经元限制性沉默因子对CART基因转录的调控作用及其机制研究
[Abstract]:Stem cells are a kind of cells with strong self-renewal and multi-directional differentiation potential. They can be induced to differentiate into mature neurons and islet cells under specific conditions in vitro, thus providing excellent seed cells for cell transplantation in the treatment of diabetes, Parkinson's syndrome, stroke and other diseases. However, they have important clinical application value. In the process of stem cells differentiating into neurons and islet cells, there are a series of problems, including inefficient differentiation, immature function of differentiated cells, etc. In the final analysis, the mechanism of differentiation is still unclear. NCER factor, NRSF; also known as RE-1 silencing transcription factor (REST) plays an important role in the differentiation of stem cells into neurons and islet cells. In addition, our laboratory studies have shown that NRSF regulates neuronal and islet-related target genes such as insulin, cocaine and amphetamine-regu. Based on this work, further study on the transcriptional regulation mechanism of NRSF on its target genes will help us better understand the role of NRSF in the differentiation of stem cells into neurons or islet cells and the maintenance of function of mature cells, so as to guide stem cells to mature nerves in the future. Cell or islet cell differentiation provides new ideas.
NRSF is a protein with nine Cys2/His2 zinc finger structures. It has one DNA binding domain, one lysine-rich domain, one proline-rich domain and two transcription inhibitory domains, N-terminal inhibitory domain and C-terminal inhibitory domain. It is widely expressed in embryonic stem cells (ES cells), neural stem cells (neural stem cells). Stem cells, NSCs, and non-neural cells, which are not expressed in most differentiated neurons, recruit different inhibitory complexes by binding to specific acting elements NRSE (neuron-restrictive silencer element, NRSE; also known as Repressor Element, RE1) to play a role in target genes such as type II sodium channel, SCG10, connectin 36 (Connex). In36) plays an important role in the maintenance of ES cell totipotency and self-renewal, early embryonic development, stem cell differentiation into neurons and islet cells.
CART is a new type of neuropeptide, which is distributed in the central and peripheral nervous system, adrenal glands, islets and other endocrine tissues. Many studies have shown that CART is involved in many physiological processes, such as food intake and obesity, stress, energy metabolism, neuroprotection and so on. The research mainly focuses on the localization, processing and function exertion of CART peptides. There are few studies on the transcriptional regulation of CART gene including transcription factors, regulatory elements and the neuroprotective mechanism of CART peptides. This system will provide powerful theoretical guidance for basic research and clinical treatment of diabetes, nervous system diseases and so on.
Our previous work has shown that CART gene is one of the target genes for NRSF. The NRSE-like motifs in the core promoter region of CART gene can specifically bind to NRSF sequence to regulate the transcriptional inhibition of CART gene. NRSE has a common NRSE-like motif that is very similar to each other and is conserved among species. Does this sequence also participate in the transcriptional regulation of CART gene? How does it coordinate with NRSE in the promoter region of CART gene to regulate the transcriptional regulation of CART gene? Only the positive regulatory pathway of cAMP/PKA/CREB is clear. So, how does the negative regulatory system of NRSF-NRSE and the positive regulatory system of cAMP/PKA/CREB compete to regulate the CART gene and jointly regulate the transcriptional level of CART gene?
This study mainly consists of three parts:
First, the transcriptional regulation of CART gene by intron sequence.
By using rVista software, we analyzed the intron sequences of human, rat and mouse CART genes retrieved from NCBI database of the National Center for Biomedical Information of the United States, and predicted a series of elements that might regulate the expression of CART genes, including ZF5, E47, NRSE, AREB6, and so on. Combining with previous work, we identified human, large and large. In order to investigate the transcriptional regulation of CART gene by the first intron of CART gene and its NRSE elements, we studied the NRSE-like motif of the first intron of CART gene in mice. Basic-CART32 (P-Luc), a luciferase reporter vector pGL3-Basic-CART32-Intron (P-Luc-I), pGL3-Basic-CART32-NRSEnon Intron (P-Luc-tI), was constructed and co-transfected into NTera2/CloneD1 cells with the luciferase-containing plasmid pRL-CMV. The results showed that the transcriptional activity of P-Luc-I was down-regulated by 57.9% (P 0.05) compared with the control group, indicating that the first intron sequence of CART gene was involved in the negative regulation of CART gene transcription. The activity of CART gene was up-regulated by 53.8% (P 0.05), suggesting that the intron of CART gene plays a negative role in the transcriptional regulation of CART gene through NRSE in its region. It was confirmed that the binding between NRSF and intron NRSE existed in the natural chromatin region.
Two, the regulatory effect of NRSF on CART gene transcription and its mechanism.
In the first part of this paper, we carried out a preliminary study on the NRSE-like sequence of the first intron region of the CART gene. In order to further explore how NRSF regulates the transcription of the gene through the promoter and intron sequences of the CART gene, we carried out a preliminary study on the NRSE-like sequence of the first intron region of the CART gene. Series of work. Electrophoretic mobility shift assay (EMSA) confirmed that the NRSE motif of CART gene promoter region and the first intron region could specifically bind to NRSF in vitro. Chromatin immunoprecipitation assay showed that NRSF and NRSE junction occurred in different NRSF expression cell lines. In order to understand how NRSF regulates the transcription of CART gene through promoter and intron sequences, we used CART promoter-luciferase reporter vectors P-Luc, P-Luc-tI, P-Lu. At the same time, we constructed the CART promoter-luciferase reporter vector pGL3-Basic-NRSEnon promoter (tP-Luc) and the luciferase reporter vector pGL3-Basic-NRSEnon promoter-N (tP-Luc-I), and the luciferase reporter vector pGL3-Basic-NRSEnon promoter-N (pGL3-Basic-NRSEnon Promoter-N) with or without NRSE motif deletion at the 3'end of the luciferase gene. RSEnon Intron (tP-Luc-tI), these reporter vectors were transfected into HeLa cells. The results of luciferase activity assay showed that CART gene intron and promoter cooperated with the negative transcriptional regulation of CART gene, and NRSF-NRSE in promoter region played a stronger negative transcriptional regulation on CART gene. Co-transfection Luciferase Report Similar results were also obtained in SK-N-SH cells with low NRSF expression plasmid pcDNA3.1-NRSF. In order to verify whether the negative transcriptional regulation of the CART gene promoter and the first intron depended on the NRSE elements in their respective regions, we originally contained the NRSE motif of the double-copy CART promoter (normal or normal). On the basis of the mutant sequence, a double-copy CART intron NRSE motif (normal or mutant) was inserted at the 3'-terminal of the luciferase gene. These luciferase reporter vectors were co-transfected into HeLa cells and SK-N-SH cells with the pRL-CMV plasmid containing marine luciferase, respectively. The results showed that the negative regulation of CART gene transcription by the promoter and the first intron region depended on the synergistic effect of NRSE elements in their respective regions.
Three, the positive and negative regulation system of CART gene expression and its mechanism of action.
To further investigate how the NRSF-NRSE negative regulatory system and the cAMP/PKA/CREB positive regulatory system competently regulate the expression of CART gene, we first co-transfected P-Luc-I and compared the plasmid pcDNA3.1-NRSF (100ng, 200ng, 400ng/2 *105 cells) with the plasmid pcDNA3.1 or the concentration gradient NRSF expression plasmid pcDNA3.1-NRSF (100ng, 200ng, 400ng/2 *105 cells) to detect the luciferase activity. The results showed that transfected pcDNA3.1-NRSF 400ng/2 *105 cells could inhibit the positive regulation of Forskolin/cAMP/PKA/CREB on CART, suggesting that the negative regulation of NRSF-NRSE induced by high level of NRSF expression could inhibit the function of positive regulation system of cAMP/PKA/CREB.
On this basis, we established an oxygen-glucose deprivation (OGD) model of neurons and carried out related experiments in combination with the function of CART peptides to reduce cell death induced by ischemia/hypoxia. In this model, we can further investigate whether changes in NRSF expression can cause changes in CART gene expression and affect the role of cAMP/PKA/CREB positive regulatory pathway.
SK-N-SH cells inoculated in 12-well plates were placed in a hypoxic glove box at 37 C, 0.3% O2, 95% N 2 for 3 hours to simulate the ischemia/hypoxia environment in vitro. The expression of NRSF and CART in the treated SK-N-SH cells was detected by RT-PCR and Western Blot after 24 h of reoxygenation, 48 h of reoxygenation, and the apoptosis rate was detected by flow cytometry. The results showed that the expression of NRSF was up-regulated and the expression of CART was down-regulated after reoxygenation in SK-N-SH cells treated with OGD, and the apoptosis rate was up-regulated with the prolongation of reoxygenation time. In the study of the interaction between cAMP/PKA/CREB and NRSF-NRSE regulatory system, we treated SK-N-SH cells with OGD for 3 hours. Comparing with the co-transfection of pcDNA3.1 or NRSF expression plasmid pcDNA3.1-NRSF, luciferase activity assay showed that OGD treatment could induce the up-regulation of NRSF expression, but could not inhibit the positive regulation of Forskolin/cAMP/PKA/CREB on CART. When exogenous transfection of NRSF expression plasmid 200 ng, 400 ng/2*105 cells The results of flow cytometry also indicated that the negative regulation of NRSF-NRSE induced by high level of NRSF expression could inhibit the positive regulation of cAMP/PKA/CREB.
In summary, we demonstrated that the NRSE-like motifs in the first intron of CART gene play a negative role in the transcriptional regulation of CART gene by specific binding to NRSF protein through bioinformatics analysis, electrophoretic mobility change assay, chromatin immunoprecipitation assay, and luciferase reporter system activity assay. CART gene promoter, the first intron, depends on the interaction of NRSE elements in their respective regions to play a synergistic role in the transcriptional repression of CART gene.
【学位授予单位】:中国人民解放军军事医学科学院
【学位级别】:博士
【学位授予年份】:2011
【分类号】:R346
【相似文献】
相关期刊论文 前10条
1 李丹妮;赵越;;ERα的辅调节因子与乳腺癌关系的研究进展[J];生命科学;2011年08期
2 孟希亭;林晨;梅佳;王海娟;马飞;张金龙;张颖;钱海利;;活体成像系统检测携荧光素酶增殖缺陷型腺病毒在小鼠体内的表达和分布[J];中国肿瘤生物治疗杂志;2011年04期
3 刘竹;艾青;兰欢;吉颖;杨正梅;何江宜;郝晓璐;宋方洲;卜友泉;;人ACER2基因启动子的鉴定与初步分析[J];中国细胞生物学学报;2011年06期
4 高原;惠宁;刘善荣;;长链非编码RNA的研究进展[J];第二军医大学学报;2011年07期
5 李小雷;伍志强;马晓星;赵亚力;韩为东;;抑制LRP16基因的表达显著下调TNF-α介导的NF-κB转录活性[J];中国生物化学与分子生物学报;2011年07期
6 ;第2个诱导肾癌的基因被发现[J];生物学通报;2011年03期
7 侯德富;关勇军;关瑞;欧阳咏梅;余艳辉;陈主初;;人NPCEDRG基因启动子的克隆及CCAAT/NFY结合位点初步分析[J];生物化学与生物物理进展;2011年08期
8 ;英科学家首次测出活体心脏能量水平[J];生命世界;2006年11期
9 李夏雨;沈守荣;武明花;李小玲;熊炜;卢建红;周鸣;马健;向娟娟;曾朝阳;向波;周艳宏;肖岚;周厚德;范松青;李桂源;;多基因遗传性肿瘤不同阶段转录组学调控规律及其分子机制[J];中南大学学报(医学版);2011年07期
10 方焕;朱传武;陈明;;hTERT转录调控及其在肝细胞癌治疗中的研究进展[J];临床肝胆病杂志;2011年09期
相关会议论文 前10条
1 徐卫红;高瑞兰;陈小红;钱煦岱;吴超群;;三七皂苷对造血细胞AP-1族转录调控蛋白NF-E2、c-Jun和c-Fos的诱导作用[A];第九届全国实验血液学会议论文摘要汇编[C];2003年
2 李园园;王垒;陆长德;;人增殖细胞核抗原与细胞周期相关的转录调控研究[A];华东六省一市生物化学与分子生物学会2003年学术交流会论文摘要集[C];2003年
3 杨兰兰;刘先俊;;NUAK1—NFkB通路新转录调控或共调控因子[A];重庆市生物化学与分子生物学学术会议论文摘要汇编[C];2009年
4 鲍永利;乌垠;于春雷;孟祥颖;孙颖;李玉新;;人多药耐药基因MDR1启动子克隆及转录调控的初步研究[A];吉林省第六届生命科学大型学术报告会论文集[C];2008年
5 高瑞兰;马逢顺;吴超群;许家鸾;B.H.Chong;牛泱平;苗青;王京霞;金锦梅;;人参皂苷组分治疗难治性血液病及对造血相关基因的转录调控[A];第四次全国中西医结合中青年学术研讨会论文集[C];2002年
6 徐卫红;高瑞兰;陈小红;郑茵红;;三七皂苷对多种造血相关转录调控蛋白的诱导作用[A];第六届全国中西医结合血液病学术会议论文汇编[C];2002年
7 刘兵;毛宁;;胚胎造血发育的转录调控[A];第九届全国实验血液学会议论文摘要汇编[C];2003年
8 孔辉;王莹;朱庆林;余擎;Gabriele Mues;Rena N.D'Souza;;牙齿发育过程中Pax9和Msx1对BMP4转录调控作用的研究[A];全国第八次牙体牙髓病学学术会议论文汇编[C];2011年
9 高瑞兰;马逢顺;吴超群;许家鸾;B.H.Chong;牛泱平;苗青;王京霞;金锦梅;;人参皂苷对造血相关基因的转录调控及治疗难治性血液病[A];第九届全国实验血液学会议论文摘要汇编[C];2003年
10 高春芳;王皓;徐玲玲;赵文静;孔宪涛;;人α1(Ⅰ)胶原基因转录调控研究[A];中国免疫学会第四届学术大会会议议程及论文摘要集[C];2002年
相关重要报纸文章 前10条
1 衣晓峰;哈医大一院系列研究阿尔茨海默病关联基因[N];中国医药报;2007年
2 王春;弄潮正当时[N];科技日报;2004年
3 王振岭;诱发心肌肥厚新基因被发现[N];健康报;2005年
4 记者 陈勇 晓安;“改装”艾滋病毒成克癌“导弹”[N];新华每日电讯;2005年
5 记者 李红;让科学和艺术相结合[N];科技日报;2000年
6 本报记者 李婵;克隆猪身上发荧光[N];北京科技报;2004年
7 王坤;我国基因剔除研究取得重大进展[N];中国医药报;2000年
8 王世恩 特约记者 王坤;四医大建立基因剔除动物模型[N];解放军报;2000年
9 记者 周颖;中澳合作开发中草药治疗血液病取得进展[N];中国中医药报;2001年
10 通讯员 王坤;我国基因剔除技术取得重要进展[N];科技日报;2000年
相关博士学位论文 前10条
1 张静;神经元限制性沉默因子对CART基因转录的调控作用及其机制研究[D];中国人民解放军军事医学科学院;2011年
2 刘智慧;寡肽(OGP、HIV-1 tat~[47-57])的合成、聚合及功能研究以及NRSF/REST在转录调控方面的研究[D];中国科学院研究生院(上海生命科学研究院);2004年
3 李军林;MINT蛋白同源二聚体形成及对其介导的转录抑制作用的拮抗[D];第四军医大学;2005年
4 乔文涛;牛泡沫病毒3026反式激活因子Borf1的特征及作用机制初探[D];南开大学;2004年
5 颜峻;Cyclin D3参与转录调控,p110C诱导凋亡及活性寡糖的研究[D];复旦大学;2004年
6 王晶;裂殖酵母核糖体L32-2蛋白潜在转录调节调节作用的研究[D];南京师范大学;2006年
7 卢建雄;营养和激素对原代培养大鼠脂肪细胞脂肪形成的调控及机理研究[D];西北农林科技大学;2005年
8 王继;血管生成素与碱性成纤维生长因子之间相互作用关系及其分子机制的研究[D];东北师范大学;2009年
9 朱慧芳;Y家族DNA聚合酶对化学致癌物MNNG应答的转录调控研究[D];浙江大学;2009年
10 秦珑;整体调控子PhoP直接调控鼠疫耶尔森氏菌胞内生存能力的研究[D];中国人民解放军军事医学科学院;2006年
相关硕士学位论文 前10条
1 刘凤鸣;人PDCD4启动子的确定及其转录调控的初步研究[D];山东大学;2010年
2 吴顺泉;多个microRNAs通过直接作用于p21的3'UTR调控p21基因的表达[D];福建医科大学;2010年
3 王礼翠;HCV丝氨酸蛋白酶活性监测体系的建立[D];中国人民解放军军事医学科学院;2010年
4 翟春媛;猪TLR4基因的突变与功能分析[D];东北农业大学;2010年
5 刘成柏;用生物发光免疫技术检测肝肿瘤标志物AFP在肝癌早期诊断中的研究[D];吉林大学;2005年
6 薛丽英;SV40增强子修饰的hTERT核心启动子靶向转录荧光素酶载体的构建和鉴定[D];天津医科大学;2005年
7 黄丽玲;水稻抗病相关基因OsDR2的分离克隆和功能鉴定[D];华中农业大学;2003年
8 唐建华;降脂药物筛选模型的建立及其在决明子降脂作用机理研究中的应用[D];四川大学;2005年
9 刘艳杰;重组萤火虫荧光素酶及其稳定性研究[D];天津大学;2010年
10 徐燕;荧光素酶作为报告基因的丙型肝炎病毒细胞感染系统的建立和应用[D];复旦大学;2011年
,本文编号:2219090
本文链接:https://www.wllwen.com/xiyixuelunwen/2219090.html