β肾上腺素能受体活化蛋白激酶C_ε诱导心肌细胞肥大及其机制探讨
[Abstract]:BACKGROUND: Myocardial hypertrophy is a common pathological change in many cardiovascular diseases, such as hypertension, coronary heart disease, valvular disease and congenital heart disease. It is a pathological compensatory process of myocardial cells to a variety of adverse stimuli. These signals alone or together activate multiple signal transduction pathways that ultimately contribute to and/or increase myocardial hypertrophy. To clarify the etiology and pathogenesis of myocardial hypertrophy is of great significance for improving prevention and treatment methods, developing effective drugs and reducing mortality and disability. The study of signal transduction mechanism of cardiac hypertrophy has become a hot spot in recent years. Adrenergic signal transduction pathways in the heart include alpha-adrenergic receptor (alpha-AR) and beta-adrenergic receptor (beta-AR). When alpha-AR and beta-AR are activated, phospholipase C (PLC)/protein kinase C (PKC) and adenylate cyclase/protein excitation, respectively. Activation of the enzyme A (PKA) signaling pathway. Cardiac adrenergic signaling pathway plays an important role in myocardial hypertrophy in vitro and in vivo in transgenic mice.
Since Ahlquist et al classified adrenergic receptors into alpha-AR and beta-AR in 1948, it has been thought that the PKC signal transduction pathway is mediated by alpha-AR. However, studies by Schmidt et al have shown that cyclic adenosine monophosphate (cAMP) can activate a recently discovered guanine-exchange factor: the exchange protein (Epac) directly activated by cAMP, thereby activating PLCs and PKC, suggesting that beta-AR signal transduction pathway is mediated by alpha-AR. There may also be signal transduction pathways mediated by Epac and PLC between PKC.
AIM: To investigate whether isoproterenol (Iso), a pAR agonist, activates PKCs after stimulation of cardiomyocytes and elucidate its mechanism.
METHODS: The primary cultured Wistar neonatal rat cardiomyocytes were treated with beta-AR agonist Iso (lUMol/L, lmin~30min), Epac agonist 8-CPT (lUMol/L, 1Omin) and phospholipase C inhibitor U73122 (2UMO/L, 30min), respectively. The cells were treated with mutant Epac (Epac R279K, Epac inhibitor) carrying dominant inhibitory effect (DN) respectively. Adenovirus, adenovirus encoding cAMP-dependent protein kinase inhibitor (Ad.PKI) and adenovirus labelled green fluorescent protein (GFP) were used to infect cardiomyocytes. Iso (l_ micromol/L, lmin) was used to treat the infected cells. The PKCs protein in the granular part of cardiomyocytes was semi-quantitatively detected by Western blot and observed by confocal laser microscopy. To investigate the translocation of PKCs in cardiomyocytes, the myocardial cells were transfected with specific PKCs epsilon inhibitor peptide (PKC epsilon inhibitor peptide) and negative control peptide (PKC epsilon scramble peptide). The surface area and protein content of cardiomyocytes were measured 48 hours after incubation with Iso (10 micromol/L), and the phosphorylated ERK1/2 (pERK1/2) eggs were treated with Iso (1 micromol/L, 1 Omin). The changes of white expression were analyzed with SPSS11.0 statistical software, and the difference was statistically significant with P 0.05.
RESULTS: Activation and translocation of PKCs were induced by stimulation of pAR. Some PKCs in myocardial granules began to increase after incubation with Iso for 1 minute, and returned to baseline level at 30 minutes. Activation and translocation of PKCs were observed in myocardial cells around the nuclear membrane, which was evident at 1 to 15 minutes after incubation with Iso. 2. Incubation with Iso (lUMol/L, lmin) and Epac agonist 8-CPT was fine. Both Iso and 8-CPT induced PKC epsilon translocation around the nucleus, and the perinuclear staining scores of PKCs in both groups were higher than those in the control group (P 0.05). 3. After adenovirus Ad. PKI was used to infect cardiomyocytes in advance, the increase of PKC epsilon induced by Iso was not inhibited (P 0.01). Quantitative observation of Ad.PKI also failed to inhibit PKC epsilon turnover induced by Iso (P 0.01). 4. Cardiac myocytes were infected with adenovirus encoding Epac R279K and treated with Iso after inhibiting or blocking the effect of Epac. Partial PKC epsilon of cell granules did not increase and PKC epsilon activation induced by Iso was blocked. After pre-incubation, the activation and translocation of PKCs induced by Iso stimulation disappeared, the partial PKC epsilon did not increase (P 0.05), and PKC epsilon did not occur._PKC epsilon activation induced by Iso could increase the expression of pERK1/2 and induce cardiomyocyte hypertrophy.After transfected with PKCs inhibitory peptide and negative control peptide respectively, the myocardial cells were treated with Iso (lmicromol/L, 1O control peptide). Iso increased the expression of pERK1/2 in negative control peptide group (P 0.05): Iso did not increase the expression of pERK1/2 in PKC epsilon inhibitory peptide group (P 0.05), suggesting that the increase of pERKl/2 expression induced by Iso was inhibited after inhibiting the activation of PKC epsilon. In addition, the surface area and protein content of myocardial cells in control group and Iso group were 1319.79, 1874.36 6550 The area was 1268.78 [501.63] micron 2 and 1604.85 [489.88] micron 2, respectively, and the protein content was 0.73 [0.12] and 0.62 [0.07], respectively (P 0.05), suggesting that PKC epsilon inhibitory peptide blocked Iso-induced cardiomyocyte hypertrophy.
CONCLUSION: The activation and translocation of PKC epsilon induced by stimulation of beta-AR in cardiomyocytes suggest that there may be interaction between pAR and PKC epsilon in cardiomyocytes. The activation and translocation of PKC epsilon induced by stimulation of beta-AR may not depend on PKA. Activated EpaC activates PLC and thus mediates PKC epsilon activation and translocation to the perinucleus. Increased expression of pERK1/2 and cardiomyocyte hypertrophy are one of the adverse effects of Iso-activated PKC epsilon signal transduction pathway. Activated PKC epsilon by beta-AR may activate ERK signal transduction pathway and may be involved in inducing cardiomyocyte hypertrophy.
【学位授予单位】:昆明医科大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:R363
【共引文献】
相关期刊论文 前10条
1 杨新;;自拟桑葶汤对扩张型心肌病患者生活质量和运动耐量的影响[J];中医药临床杂志;2010年03期
2 张茂根;;温阳通络活血方药治疗慢性心力衰竭临床观察[J];中医药临床杂志;2010年04期
3 王银燕;戴小华;;参附注射液治疗慢性心力衰竭临床观察[J];中医药临床杂志;2012年01期
4 吕留强;祖秋菊;唐扬章;;心脏再同步化治疗8例充血性心力衰竭的疗效观察[J];安徽医学;2010年03期
5 李玉英;;急性心力衰竭的诊治[J];安徽医学;2011年08期
6 张以政;王治;;血尿酸水平与慢性充血性心力衰竭患者心功能的相关性研究[J];安徽医学;2011年10期
7 程立顺;;利钠肽与心血管疾病的诊断与治疗[J];安徽医药;2009年07期
8 张先林;张恒;蔡鑫;包宗明;王洪巨;马宾;宋伟;王凤超;;无症状性心功能不全患者血浆脑利钠肽的临床研究[J];蚌埠医学院学报;2010年02期
9 刘廷容;唐金国;;芪苈强心胶囊佐治慢性心力衰竭疗效观察[J];蚌埠医学院学报;2010年12期
10 臧乃谅;;慢性心力衰竭并发心律失常68例临床分析[J];青岛大学医学院学报;2008年05期
相关会议论文 前10条
1 姚鸿梅;黄宝涛;景显超;黄鹤;;超声心动图诊断肺部疾病还是左心衰的临床价值[A];2011'中国西部声学学术交流会论文集[C];2011年
2 李平;谢少玲;刘永刚;;处方点评的实践与体会[A];2011年中国药学大会暨第11届中国药师周论文集[C];2011年
3 宋庆桥;;缺血性心力衰竭阳虚患者临床特征初探[A];2011年中华中医药学会心病分会学术年会暨北京中医药学会心血管病专业委员会年会论文集[C];2011年
4 詹文锋;黄俊;陈纯波;曾文新;孙诚;叶珩;詹伟锋;江稳强;;N-端脑利钠肽前体在重症患者充血性心力衰竭中的诊断价值[A];2011·中国医师协会中西医结合医师大会论文集[C];2011年
5 刘春香;毛静远;王贤良;侯雅竹;张川;;芪苈强心胶囊治疗慢性心力衰竭的系统评价[A];中华中医药学会心病分会第十一届学术年会论文精选[C];2009年
6 韩强;杨荣荣;;以治疗指南为依据对慢性心力衰竭患者个体化给药方案设计实践[A];2013年中国临床药学学术年会暨第九届临床药师论坛论文集[C];2013年
7 张诗吟;陈建昌;洪小苏;徐卫亭;黄婧娟;;芪苈强心胶囊对兔心肌梗死后心力衰竭血流动力学的影响[A];首届中西医血管病学大会论文汇编[C];2013年
8 王立新;赵宇;李富军;何晓雷;王建斌;;芪苈强心胶囊治疗难治性心力衰竭的临床观察[A];首届中西医血管病学大会论文汇编[C];2013年
9 张丽蕊;陈进玲;;芪苈强心胶囊联合益心舒治疗冠心病心力衰竭的效果观察[A];首届中西医血管病学大会论文汇编[C];2013年
10 郑立文;刘晨;;芪苈强心胶囊对老年慢性心力衰竭患者心功能和NT-proBNP的影响[A];首届中西医血管病学大会论文汇编[C];2013年
相关博士学位论文 前10条
1 李旭光;细胞色素P450表氧化酶基因2J2抑制心肌肥厚的作用及其机制[D];华中科技大学;2011年
2 逯金金;慢性心衰中西医结合生存质量量表的研究及应用[D];北京中医药大学;2011年
3 张鹏;冠心病慢性心力衰竭常见证候、证候要素分布规律的研究[D];北京中医药大学;2011年
4 颜旭;超微强心安神汤治疗慢性心衰气阴两亏证的临床疗效与机理探讨[D];湖南中医药大学;2011年
5 张稳;基于RAA系统探讨复方钩藤降压宁片对2K1C-RHR作用效果的实验及临床研究[D];湖南中医药大学;2011年
6 汪志刚;烟碱受体激动剂和拮抗剂对Aβ蛋白诱导神经细胞损伤的影响及机制研究[D];暨南大学;2011年
7 王晓梅;心力衰竭患者心脏收缩同步性研究[D];天津医科大学;2010年
8 樊讯;《伤寒论》温阳三方干预心梗后心衰心阳虚证候大鼠心室重构的比较研究[D];湖北中医药大学;2011年
9 周炳元;超声心动图多参数记分(EMPS)评估左心室整体功能的可行性及其预后价值[D];苏州大学;2011年
10 李岩;益气药对慢性心力衰竭心气虚证模型大鼠心肌能量代谢重构的干预作用[D];北京中医药大学;2012年
相关硕士学位论文 前10条
1 范莉;实时三维超声心动图和多普勒超声评价心室收缩同步性[D];南京医科大学;2009年
2 董红科;芪苈强心对阿霉素致扩心病大鼠心脏结构功能及分子机制的影响[D];南京医科大学;2010年
3 杨培灵;不同血运重建方式介入治疗冠状动脉多支病变的临床研究[D];郑州大学;2010年
4 陈坡;螺内酯对心力衰竭大鼠心功能及血浆TGF-β-1、BNP、TNF-α的影响[D];郑州大学;2010年
5 洪烨晶;慢性心力衰竭常见中医证型与尿酸及左室重量指数的相关性研究[D];黑龙江中医药大学;2010年
6 王芳;慢性心力衰竭患者血清MMP-9.hs-CRP及UA.Lp(a)检测的临床应用[D];山西医科大学;2011年
7 程守全;氨基末端脑钠肽前体和高敏C反应蛋白与冠状动脉病变程度的相关性研究[D];山西医科大学;2011年
8 张晓丽;实时三维超声心动图评价扩张型心肌病患者左心室收缩不同步性[D];山西医科大学;2011年
9 辛雨;慢性冠心病心衰中西医药物治疗的新进展[D];北京中医药大学;2011年
10 李莉;151例慢性心力衰竭血瘀证患者的证、治相关因素的回顾性分析[D];北京中医药大学;2011年
,本文编号:2249146
本文链接:https://www.wllwen.com/xiyixuelunwen/2249146.html