当前位置:主页 > 医学论文 > 西医药论文 >

CRFR1参与低氧诱导的星形胶质细胞水肿

发布时间:2019-05-18 04:25
【摘要】:低氧作为一种非特异性应激原可诱导机体产生应激反应。哺乳动物通过下丘脑-垂体-肾上腺皮质轴(Hypothalamus-pituitary-adrenal axis, HPA)对机体面临的各种应激做出应答反应。应激促进下丘脑室旁核(Paraventricular nucleus, PVN)神经元释放下丘脑促肾上腺皮质激素释放激素(Corticotropin releasing factor, CRF)。 CRF主要通过和促肾上腺皮质激素释放激素I型受体(Corticotropin releasing factor receptor-1, CRFR1)和促肾上腺皮质激素释放激素II型受体(Corticotropin releasing factor receptor-2, CRFR2)结合发挥生理作用,参与神经和体液调节。 环境低氧严重时可导致机体发生脑水肿,脑水肿的发生、发展与水通道蛋白(Aquaporins, AQPs)密切相关。AQPs是细胞膜上一类特异性水通道蛋白,参与多种类形细胞的水分子跨膜运输。其中水通道蛋白4(Aquaporin-4, AQP4)在哺乳动物脑组织中分布最为丰富,在正常生理状态下参与大脑水平衡调节,在病理损伤时则参与脑水肿形成和消退。AQP4在星形胶质细胞中大量表达,因此星形胶质细胞的肿胀与脑水肿有重要关系。低氧诱导因子-1(Hypoxia induced factor-1, HIF-1)是低氧敏感因子,参与调节机体氧平衡。低氧上调HIF-la蛋白表达,使HIF-1稳定性增加并与低氧反应元件(Hypoxia response element, HRE)结合作用下游靶基因,调控生理或病理作用。HIF-1调控的靶基因有血管内皮生长因子(Vascular endothelial growth factor, VEGF)及其受体(Vascular endothelial growth factor receptor, VEGFR)、诱导型一氧化氮合酶(Inducible nitric oxide synthase, iNOS)等。iNOS是一氧化氮合酶(Nitric oxide synthase, NOS)的一种,主要参与机体免疫反应,能够催化L-精氨酸(L-Arginine)产生一氧化氮(Nitric oxide, NO)。 NO是著名的气体信号分子,可以通过NO-cGMP-PKG通路调节细胞和机体功能。CRFR1在中枢神经系统和外周系统广泛分布,在星形胶质细胞中也有表达。我们实验室前期结果表明,低氧时下丘脑CRF分泌增加,前额叶皮层CRF基因转录升高。因此,我们设想机体在严重低氧时一方面通过CRF释放增加,激活星形胶质细胞CRFR1,引发胞内信号通路;另一方面细胞在严重低氧时胞内低氧诱导因子-1α(Hypoxia induced factor-1α, HIF-1α)激活,驱动下游信号通路。这两条通路共同作用于AQP4,增加AQP4水通道功能。 本研究通过低氧培养箱模拟星形胶质细胞低氧环境,通过western blot、荧光标记法和细胞免疫荧光等方法,对CRFR1如何参与低氧诱导的星形胶质细胞水肿进行了研究。研究结果发现AQP4与CRFR1在大鼠原代皮层星形胶质细胞共表达;10nM和100nM CRF均能诱导大鼠原代星形胶质细胞胞内钙离子浓度升高,该作用可以被预孵CRFR1拮抗剂CP154,526阻断。同时发现大鼠原代星形胶质细胞在低氧(1%02)下HIF-1α蛋白表达增加,但并不表达iNOS蛋白;低氧上调大鼠原代小胶质细胞iNOS表达。这些结果提示低氧诱导皮层神经元分泌CRF,通过在星形胶质细胞G-蛋白偶联受体CRFR1激活胞内第二信使Ca2+,增加AQP4水通透性;低氧使胞内HIF-1α蛋白集聚增多,诱导下游低氧相关靶基因表达,促进AQP4水通透性增加。 创新点: 1.发现低氧不激活离体培养大鼠原代星形胶质细胞的iNOS-NO-PKG通路。
[Abstract]:Hypoxia, as a non-specific stress, can induce stress reaction in that body. The mammal responds to the various stresses facing the body through the hypothalamic-pituitary-adrenal axis (HPA). Stress promotes the release of the corticotropin-releasing hormone (CRF) from the paraventricular nucleus (PVN) of the hypothalamus. The CRF mainly plays a physiological role in combination with the corticotropin-releasing hormone type I receptor (CRFR1) and the corticotropin-releasing hormone type II receptor (CRFR2), and is involved in the regulation of nerve and body fluid. The development of water channel protein (AQPs) is closely related to the development of water channel protein (AQPs). AAQPs is a class of specific water-channel proteins on the cell membrane, which is involved in the cross-membrane transport of water molecules in multi-species cells. The water channel protein 4 (Aquaporin-4, AQP4) is most abundant in the brain of the mammal, and is involved in the brain water balance regulation in the normal physiological state, and is involved in the formation and elimination of the brain edema in the case of pathological injury. The expression of AQP4 in astrocyte is a significant effect on the swelling and brain edema of astrocytes. The hypoxia-inducible factor-1 (HIF-1) is a hypoxia-sensitive factor and is involved in the regulation of the oxygen level in the body. The expression of HIF-la protein is up-regulated by hypoxia, and the stability of HIF-1 is increased and the downstream target gene is combined with the hypoxia response element (HRE) to control the physiological or pathological changes. The target gene regulated by. HIF-1 has vascular endothelial growth factor (VEGF) and its receptor (VEGFR) and inducible nitric oxide synthase (iNOS). The iNOS is a kind of nitric oxide synthase (NOS), which is mainly involved in the immune response of the organism and can catalyze the production of nitric oxide (NO) in L-arginine (L-Arginine). ). NO is a well-known gas signal molecule that can be used to regulate cell and body work through the NO-cGMP-PKG pathway can. CRFR1 is widely distributed in the central nervous system and the peripheral system, and there are also tables in astrocyte Da. The early results of our laboratory indicated that the secretion of CRF in the hypothalamus of the prefrontal cortex increased, and the transcription of CRF gene in the prefrontal cortex was increased. High. Therefore, we imagine that, on the one hand, in the case of severe hypoxemia, on the one hand, the increase of CRFR1 of the astrocytes is activated and the intracellular signaling pathway is induced; on the other hand, the cells are activated by the hypoxemia induction factor-1 (HIF-1) in severe hypoxia, and the downstream signal is driven. Road. These two paths act together on AQP4 and increase AQP4 water channel work In this study, the hypoxia environment of astrocyte was simulated by a low-oxygen incubator, and the method of western blot, fluorescent labeling and cell immunofluorescence was used to study how CRFR1 was involved in hypoxia-induced astrocyte edema. The results of the study showed that AQP4 and CRFR1 were co-expressed in primary rat cortical astrocytes; both 10 nM and 100 nM CRF were able to induce an increase in intracellular calcium ion concentration in primary astrocytes of the rat, which could be pre-treated with CRFR1 antagonists CP154,52, 6. At the same time, the expression of HIF-1 was increased under hypoxia (1%02), but the iNOS protein was not expressed. S expression. These results suggest that the hypoxia-induced cortical neurons secrete CRF and increase the water permeability of AQP4 by activating the second messenger Ca2 + in the intracellular second messenger Ca2 + in the G-protein-coupled receptor CRFR1 of the astrocyte. To promote AQP4 water permeability due to expression The sex is increased. Innovation point:1. It is found that hypoxia does not activate the iNOS-N in the primary astrocytes of the isolated rat
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R363

【相似文献】

相关期刊论文 前10条

1 吴钢,郝亚荣,李庚山,黄从新,王晶,谢强,黄峥嵘;低氧诱导心肌细胞表达血管内皮生长因子发生机制的实验研究[J];微循环学杂志;2004年01期

2 韩沾元,陈铭,吕及忍,,闻萍,宋雷蕾,吴奇英;低氧诱导兔血MDA和棘状红细胞增加及其被MPEG-SOD抑制[J];生理学报;1995年06期

3 梅长林,陈蕾;低氧诱导的大鼠系膜细胞增殖及基质mRNA表达的研究[J];中华肾脏病杂志;1996年06期

4 陈伟,陈家佩;低氧诱导促红细胞生成素基因表达的机制[J];国外医学.生理.病理科学与临床分册;2000年06期

5 宗建春,吴诚义;低氧诱导人乳腺癌细胞VEGF的表达及机制[J];重庆医科大学学报;2005年02期

6 范蓓,王艳霞,姚泰,朱依纯;p38丝裂原素激活的蛋白激酶在调节低氧诱导人内皮细胞分泌血管内皮生长因子过程中的作用(英文)[J];生理学报;2005年01期

7 聂小维;孙立军;郝跃文;杨广笑;王全颖;;构建人工合成的微小低氧反应元件可调控的AAV载体[J];细胞与分子免疫学杂志;2011年03期

8 吕顺艳,朱妙章,郭海涛,于军,魏启明;血管钠肽对中度低氧诱导的心肌细胞蛋白合成有抑制作用[J];生理学报;2002年01期

9 吕国蔚;低氧适应的进化[J];首都医科大学学报;2002年02期

10 林红,蔡英年,邓希贤,李世强,梁兵,周晓梅,蔡起蔷,杨燕芬;低氧诱导肺血管平滑肌细胞诱生型一氧化氮合酶基因表达[J];基础医学与临床;1997年03期

相关会议论文 前1条

1 刘戟环;糜漫天;张乾勇;许红霞;;牛黄酸对低氧诱导大鼠视网膜病变的防护作用及机制研究[A];中国营养学会第九次全国营养学术会议论文摘要汇编[C];2004年

相关重要报纸文章 前4条

1 汪敏 章米力;低氧诱导白血病细胞分化[N];健康报;2005年

2 汪敏 章米力;治疗白血病新理论[N];保健时报;2005年

3 汪敏 仇逸;低氧可诱导白血病细胞分化[N];医药经济报;2003年

4 ;钠尿肽防治低氧性心脏病[N];中国医药报;2004年

相关博士学位论文 前1条

1 吕顺艳;血管钠肽对低氧诱导的心肌细胞、心成纤维细胞以及血管平滑肌细胞生长的抑制调节[D];第四军医大学;2002年

相关硕士学位论文 前5条

1 郝跃文;分泌表达PR39的重组腺相关病毒的构建和促进低氧环境鸡胚血管新生作用的研究[D];第四军医大学;2008年

2 聂小维;HRE启动子调控分泌表达PR39重组AAV的构建及在CHD基因治疗中的应用研究[D];第四军医大学;2011年

3 王彦荣;氯化钴模拟低氧诱导白血病细胞分化及化疗增敏作用的实验研究[D];吉林大学;2004年

4 单俊杰;金雀异黄素对缺氧诱导的人ARPE-19细胞内碱性成纤维细胞生长因子蛋白表达的影响[D];南京医科大学;2004年

5 夏小俊;低氧对人肝癌细胞内ARE介导的NQO1酶基因表达及其对生物还原剂药物毒性的影响[D];浙江大学;2002年



本文编号:2479668

资料下载
论文发表

本文链接:https://www.wllwen.com/xiyixuelunwen/2479668.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c7353***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com