CRFR1参与低氧诱导的星形胶质细胞水肿
[Abstract]:Hypoxia, as a non-specific stress, can induce stress reaction in that body. The mammal responds to the various stresses facing the body through the hypothalamic-pituitary-adrenal axis (HPA). Stress promotes the release of the corticotropin-releasing hormone (CRF) from the paraventricular nucleus (PVN) of the hypothalamus. The CRF mainly plays a physiological role in combination with the corticotropin-releasing hormone type I receptor (CRFR1) and the corticotropin-releasing hormone type II receptor (CRFR2), and is involved in the regulation of nerve and body fluid. The development of water channel protein (AQPs) is closely related to the development of water channel protein (AQPs). AAQPs is a class of specific water-channel proteins on the cell membrane, which is involved in the cross-membrane transport of water molecules in multi-species cells. The water channel protein 4 (Aquaporin-4, AQP4) is most abundant in the brain of the mammal, and is involved in the brain water balance regulation in the normal physiological state, and is involved in the formation and elimination of the brain edema in the case of pathological injury. The expression of AQP4 in astrocyte is a significant effect on the swelling and brain edema of astrocytes. The hypoxia-inducible factor-1 (HIF-1) is a hypoxia-sensitive factor and is involved in the regulation of the oxygen level in the body. The expression of HIF-la protein is up-regulated by hypoxia, and the stability of HIF-1 is increased and the downstream target gene is combined with the hypoxia response element (HRE) to control the physiological or pathological changes. The target gene regulated by. HIF-1 has vascular endothelial growth factor (VEGF) and its receptor (VEGFR) and inducible nitric oxide synthase (iNOS). The iNOS is a kind of nitric oxide synthase (NOS), which is mainly involved in the immune response of the organism and can catalyze the production of nitric oxide (NO) in L-arginine (L-Arginine). ). NO is a well-known gas signal molecule that can be used to regulate cell and body work through the NO-cGMP-PKG pathway can. CRFR1 is widely distributed in the central nervous system and the peripheral system, and there are also tables in astrocyte Da. The early results of our laboratory indicated that the secretion of CRF in the hypothalamus of the prefrontal cortex increased, and the transcription of CRF gene in the prefrontal cortex was increased. High. Therefore, we imagine that, on the one hand, in the case of severe hypoxemia, on the one hand, the increase of CRFR1 of the astrocytes is activated and the intracellular signaling pathway is induced; on the other hand, the cells are activated by the hypoxemia induction factor-1 (HIF-1) in severe hypoxia, and the downstream signal is driven. Road. These two paths act together on AQP4 and increase AQP4 water channel work In this study, the hypoxia environment of astrocyte was simulated by a low-oxygen incubator, and the method of western blot, fluorescent labeling and cell immunofluorescence was used to study how CRFR1 was involved in hypoxia-induced astrocyte edema. The results of the study showed that AQP4 and CRFR1 were co-expressed in primary rat cortical astrocytes; both 10 nM and 100 nM CRF were able to induce an increase in intracellular calcium ion concentration in primary astrocytes of the rat, which could be pre-treated with CRFR1 antagonists CP154,52, 6. At the same time, the expression of HIF-1 was increased under hypoxia (1%02), but the iNOS protein was not expressed. S expression. These results suggest that the hypoxia-induced cortical neurons secrete CRF and increase the water permeability of AQP4 by activating the second messenger Ca2 + in the intracellular second messenger Ca2 + in the G-protein-coupled receptor CRFR1 of the astrocyte. To promote AQP4 water permeability due to expression The sex is increased. Innovation point:1. It is found that hypoxia does not activate the iNOS-N in the primary astrocytes of the isolated rat
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:R363
【相似文献】
相关期刊论文 前10条
1 吴钢,郝亚荣,李庚山,黄从新,王晶,谢强,黄峥嵘;低氧诱导心肌细胞表达血管内皮生长因子发生机制的实验研究[J];微循环学杂志;2004年01期
2 韩沾元,陈铭,吕及忍,,闻萍,宋雷蕾,吴奇英;低氧诱导兔血MDA和棘状红细胞增加及其被MPEG-SOD抑制[J];生理学报;1995年06期
3 梅长林,陈蕾;低氧诱导的大鼠系膜细胞增殖及基质mRNA表达的研究[J];中华肾脏病杂志;1996年06期
4 陈伟,陈家佩;低氧诱导促红细胞生成素基因表达的机制[J];国外医学.生理.病理科学与临床分册;2000年06期
5 宗建春,吴诚义;低氧诱导人乳腺癌细胞VEGF的表达及机制[J];重庆医科大学学报;2005年02期
6 范蓓,王艳霞,姚泰,朱依纯;p38丝裂原素激活的蛋白激酶在调节低氧诱导人内皮细胞分泌血管内皮生长因子过程中的作用(英文)[J];生理学报;2005年01期
7 聂小维;孙立军;郝跃文;杨广笑;王全颖;;构建人工合成的微小低氧反应元件可调控的AAV载体[J];细胞与分子免疫学杂志;2011年03期
8 吕顺艳,朱妙章,郭海涛,于军,魏启明;血管钠肽对中度低氧诱导的心肌细胞蛋白合成有抑制作用[J];生理学报;2002年01期
9 吕国蔚;低氧适应的进化[J];首都医科大学学报;2002年02期
10 林红,蔡英年,邓希贤,李世强,梁兵,周晓梅,蔡起蔷,杨燕芬;低氧诱导肺血管平滑肌细胞诱生型一氧化氮合酶基因表达[J];基础医学与临床;1997年03期
相关会议论文 前1条
1 刘戟环;糜漫天;张乾勇;许红霞;;牛黄酸对低氧诱导大鼠视网膜病变的防护作用及机制研究[A];中国营养学会第九次全国营养学术会议论文摘要汇编[C];2004年
相关重要报纸文章 前4条
1 汪敏 章米力;低氧诱导白血病细胞分化[N];健康报;2005年
2 汪敏 章米力;治疗白血病新理论[N];保健时报;2005年
3 汪敏 仇逸;低氧可诱导白血病细胞分化[N];医药经济报;2003年
4 ;钠尿肽防治低氧性心脏病[N];中国医药报;2004年
相关博士学位论文 前1条
1 吕顺艳;血管钠肽对低氧诱导的心肌细胞、心成纤维细胞以及血管平滑肌细胞生长的抑制调节[D];第四军医大学;2002年
相关硕士学位论文 前5条
1 郝跃文;分泌表达PR39的重组腺相关病毒的构建和促进低氧环境鸡胚血管新生作用的研究[D];第四军医大学;2008年
2 聂小维;HRE启动子调控分泌表达PR39重组AAV的构建及在CHD基因治疗中的应用研究[D];第四军医大学;2011年
3 王彦荣;氯化钴模拟低氧诱导白血病细胞分化及化疗增敏作用的实验研究[D];吉林大学;2004年
4 单俊杰;金雀异黄素对缺氧诱导的人ARPE-19细胞内碱性成纤维细胞生长因子蛋白表达的影响[D];南京医科大学;2004年
5 夏小俊;低氧对人肝癌细胞内ARE介导的NQO1酶基因表达及其对生物还原剂药物毒性的影响[D];浙江大学;2002年
本文编号:2479668
本文链接:https://www.wllwen.com/xiyixuelunwen/2479668.html