HSV-2多表位复合DNA疫苗的构建与诱导小鼠免疫效果的研究
[Abstract]:Objective To construct a multi-epitope compound DNA vaccine and immune adjuvant IL-2 plasmid of herpes simplex virus-2 (HSV-2) glycoprotein gD, gB, gC and early expression protein ICP-27, as well as a signal peptide plasmid and a ubiquitination plasmid modified on the basis of the composite vaccine plasmid, and to investigate the ability of the plasmid to induce immune response in mice.
Methods Six gene fragments of HSV-2 ICP27 377-459, gD146-179, gD223-306, gB529-606, gC247-282 and gD1-77 were amplified from the genome of HSV-2 wild strain in China by PCR. The fragments of HV fusion gene were cloned by pGEMT vector and inserted directionally. The recombinant eukaryotic expression plasmid HV-pcDNA3.1 was constructed and identified by enzyme digestion and sequencing.
The gD146-179 signal peptide fragment was amplified by PCR, and the recombinant plasmid gDs-HV-his-pcDNA3.1 was constructed by enzyme digestion and ligation.
Full-length ubiquitin gene and HSV-2 ICP27 377-459 in human genome DNA and HSV-2 genome were amplified by PCR. Fusion gene fragments were obtained by enzyme digestion and ligation. The recombinant plasmid Ub-ICP-pcDNA3.1 was constructed by inserting into eukaryotic expression plasmid pcDNA3.1 vector. The recombinant plasmid Ub-ICP-pcDNA3.1 was analyzed by enzyme digestion and sequenced.
The full-length gene of IL-2 cDNA was amplified by PCR. The recombinant plasmid IL-2-pcDNA3.1 was constructed and identified by restriction enzyme digestion and sequencing.
C57/BL6 female mice aged 6 weeks were randomly divided into 8 groups. Each group consistof 5 mice randomly divided into 8 groups. According to the different immunplasmid types and immunimmunmodes, each group was pcDNA3.1 (blankplasmid control), HV-pcDNA3.1, HV-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, gDs-HV-HV-his-pcDNA3.1, gDs-HV-HV-pcDNA3.1+his-pcDNA3.1, gDDs-HDs-HV-HV-pcDNA3.1+IL2-ppcDNA 3.1.
The mice in the first six groups were stimulated with specific antigens before immunization. Each mouse in the first six groups was adequately mixed with the corresponding plasmids of 5+5 UG (the amount of 5+5 UG in the group co-expressed with IL2) and the liposome of 1 ug. The spleen lymphocytes of the same batch of C57/BL6 female mice were transfected 20 minutes later. The spleen lymphocytes were cultured at 37 C for 4 hours with 5% CO_2 and injected subcutaneously into the mice in the second two groups with the corresponding plasmids of 5 UG (the L2 co-expression group was injected directly into bilateral anterior tibial muscles with the dose of 5+5ug. 14 days later, the mice in the first six groups were immunized with 100 UG of corresponding plasmids (100+100ug of the group co-expressed with IL2) and 10 UG of liposome. After 20 minutes, the mice in the latter two groups were injected into bilateral anterior tibial muscles with 100 UG of corresponding plasmids (with IL2). The expression group was injected directly into the bilateral anterior tibial muscles of mice with the dose of 100 + 100 ug. The method and dose of the immunotherapy were completely consistent with the formal immunization.
Three weeks after the immunization, the mice were killed by neck-cutting and the spleens were taken out for lymphocyte isolation. The specific IgG, IL-2 and IFN-gamma of HSV-2 in serum were detected by ELISA, the specific proliferation of splenic T lymphocyte was detected by MTT, the killer T lymphocyte (CTL) function was detected by lactate dehydrogenase assay and the CD4 + / CD8 + T cell was detected by flow cytometry. Classification of subgroups.
Results The constructed HV-pcDNA3.1 plasmid, IL2-pcDNA3.1 plasmid, Ub-ICP-pcDNA3.1 plasmid and gDs-HV-his-pcDNA3.1 plasmid were identified by enzyme digestion and DNA sequencing. The results showed that the HSV-2 multi-epitope compound DNA vaccine was successfully constructed.
The results showed that the combined immunization of gDs-HV-his-pcDNA3.1 and IL2-pcDNA3.1 had the strongest humoral immunity, and the specific IgG titer was about 400 times. The positive rate of CD4 on T cell surface was significantly different from that of pcDNA3.1 group (P < 0.05). The stimulus index SI of specific T lymphocyte reached about 2.75, while that of blank plasmid control group was about 0.7; the killing rate of CTL reaction in lymphocyte killing experiment (the effective target ratio was 50:1) was close to 50%, while that of blank plasmid control group was about 8%; the positive rate of CD 8 on T cell surface signal molecule was also obvious compared with blank vector pcDNA3.1 group. There was significant difference (P < 0.05), but there was no significant difference (P > 0.05) in CD4 + / CD8 +; the levels of IL 2 and IFN - gamma in serum were 1421.16 + 220.98, 685.21 + 104.20 in blank plasmid control group, 1956.19 + 219.60 in ng / L, 547.71 + 189.33 in empty plasmid control group.
Another group of experiments comparing different immune modes showed that liposome-encapsulated DNA vaccines could significantly improve the immune activity compared with bare DNA vaccines, and the liposome-encapsulated DNA vaccines could transfect IL2 plasmids and composite vaccine plasmids simultaneously.
conclusion
1. HSV-2 multi-epitope DNA vaccine was successfully constructed, including plasmid HV-pcDNA3.1, signal peptide plasmid gDs-HV-his-pcDNA3.1, ubiquitinated plasmid Ub-ICP-pcDNA3.1 and adjuvant plasmid IL2-pcDNA3.1.
2. Animal experiments in mice showed that the Vaccine Plasmid HV-pcDNA3.1 and the signal peptide plasmid gDs-HV-his-pcDNA3.1 could effectively induce humoral and cellular immune responses in mice, and the co-immunization effect was stronger with the adjuvant plasmid IL2-pcDNA3.1. The signal peptide plasmid gDs-HV-his-pcDNA3.1 and the adjuvant plasmid IL2-pcDNA3.1 co-injected to induce humoral immunity. The strongest immune response was induced by co-injection of plasmid HV-pcDNA3.1 and adjuvant plasmid IL2-pcDNA3.1.
3. Subcutaneous pre-injection of plasmid encapsulated in liposome and transfected with lymphocytes in vitro before immunization can significantly improve humoral and cellular immune responses compared with bare plasmid injection.
4. ubiquitin plasmid Ub-ICP-pcDNA3.1 can not induce effective humoral and cellular immune responses.
【学位授予单位】:复旦大学
【学位级别】:博士
【学位授予年份】:2006
【分类号】:R392;R752.1
【相似文献】
相关期刊论文 前10条
1 吴春利;程小雯;吕星;房师松;王昕;;A型流感病毒M基因DNA疫苗载体构建及免疫性研究[J];中国热带医学;2011年07期
2 齐文娟;方强;;寄生虫病DNA疫苗研究进展[J];中国血吸虫病防治杂志;2011年03期
3 李晨晨;于继云;姜敏;涂亦娴;马晓林;张富春;;草原兔尾鼠卵透明带3DNA疫苗pVAX1-sig-LTB-lZP3-C3d3的构建表达及其免疫不育的研究[J];细胞与分子免疫学杂志;2011年09期
4 邓璐;邹墨;刘艳;罗恩杰;;DNA疫苗的转运途径及其安全性研究进展[J];医学动物防制;2011年08期
5 张亮;阎瑾琦;王越;肖毅;高昆;董金凯;王博;于继云;;可复制型抗肿瘤DNA疫苗PSCK-2PFcGB的构建及体内外表达[J];南方医科大学学报;2011年06期
6 胡方靖;武军驻;;pIHsp65GM的构建及其对结核杆菌感染小鼠的保护[J];免疫学杂志;2011年08期
7 张阳;王英丽;;MUC1基因疫苗对乳腺肿瘤抑制的实验研究[J];中国妇幼保健;2011年21期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关会议论文 前10条
1 居巍;刘君炎;;结核杆菌HSP65佐剂DNA疫苗的实验研究[A];第6次全国微生物学与免疫学大会论文摘要汇编[C];2004年
2 姜秀云;何昭阳;;活体电穿孔法导入DNA:牛结核病免疫接种新技术[A];人畜共患传染病防治研究新成果汇编[C];2004年
3 靳彦文;钟辉;马清钧;;恶性疟原虫DNA疫苗的安全性研究[A];中国生物工程学会第三次全国会员代表大会暨学术讨论会论文摘要集[C];2001年
4 田洁;刘君炎;;ConA与结核杆菌HSP65DNA疫苗联合应用的研究[A];湖北省暨武汉市免疫学会第八届学术会议论文集[C];2003年
5 熊金虎;赵民;邱小萍;伍欣星;;人乳头瘤病毒嵌合型DNA疫苗的构建及其免疫效应研究[A];湖北省暨武汉市生物化学与分子生物学学会第七届第十四次学术年会论文摘要集[C];2003年
6 江云波;方六荣;肖少波;牛传双;张辉;陈焕春;;修饰的ORF5基因增强猪繁殖与呼吸综合征DNA疫苗的免疫反应[A];中国畜牧兽医学会畜牧兽医生物技术学分会暨中国免疫学会兽医免疫分会第六次研讨会论文集[C];2005年
7 吴长有;;DNA疫苗与免疫记忆[A];2005全国第二届核酸疫苗研讨会论文集[C];2005年
8 崔保安;魏战勇;杨明凡;张素梅;;DNA疫苗免疫佐剂的研究进展[A];中国畜牧兽医学会家畜传染病学分会成立20周年庆典暨第十次学术研讨会论文集(上)[C];2003年
9 杨慧兰;葛梦林;杨太成;刘荣卿;;单纯疱疹病毒gD2 DNA疫苗免疫动物诱导的细胞免疫应答[A];2003中国中西医结合皮肤性病学术会议论文汇编[C];2003年
10 张冉;易新元;曾宪芳;;日本血吸虫新基因克隆及DNA疫苗的构建和保护性研究[A];中国动物学会全国第九次寄生虫学学术讨论会论文摘要集[C];2003年
相关重要报纸文章 前10条
1 蒋明 周汉桥;DNA疫苗研究取得突破[N];健康报;2005年
2 林明贵 金关甫;DNA疫苗 战胜结核的希望[N];健康报;2003年
3 ;防治早老性痴呆DNA疫苗问世[N];新华每日电讯;2004年
4 ;DNA疫苗“饿”杀小鼠肿瘤[N];医药经济报;2003年
5 陈勇;西尼罗病毒DNA疫苗开始临床试验[N];健康报;2005年
6 梅子;期待从今天开始[N];医药经济报;2001年
7 刘恕;艾滋病疫苗离我们还有多远[N];科技日报;2005年
8 本报记者 王玲 柯玲;中国艾滋病疫苗与时间赛跑[N];经济日报;2005年
9 曲国斌;征服艾滋病不是梦[N];健康报;2001年
10 何雁;何大一:倾心祖国艾滋病防治[N];人民日报海外版;2005年
相关博士学位论文 前10条
1 张洪英;口蹄疫多表位DNA疫苗的免疫原性和安全性研究[D];第二军医大学;2003年
2 张静;轮状病毒分子流行病学调查及脂质体DNA疫苗研究[D];重庆医科大学;2002年
3 王涛;嗜肺军团菌mip基因DNA疫苗初步研究[D];四川大学;2004年
4 宋立强;异种同源钙激活Cl~-通道DNA疫苗对小鼠哮喘模型的防治作用[D];第四军医大学;2004年
5 时阳;MAGE-1与IL-18共表达DNA疫苗的构建及体内外功能验证[D];吉林大学;2004年
6 郭瀛军;猪带绦虫囊虫病DNA疫苗的中试及免疫效力研究[D];第二军医大学;2004年
7 张梦寒;汉城病毒M片段和汉滩病毒部分S片段核酸疫苗pEGFP-M-S的构建及基因免疫研究[D];苏州大学;2005年
8 焦解歌;猪Endoglin DNA疫苗诱导抗肿瘤血管生成机理研究[D];中南大学;2005年
9 郭慧琛;O型口蹄疫病毒多基因DNA疫苗的研制[D];中国农业科学院;2004年
10 张含;口服DNA疫苗防治实验性脉络膜血管新生[D];中国医科大学;2005年
相关硕士学位论文 前10条
1 张恒;鸡贫血病毒DNA疫苗的研究[D];山东师范大学;2003年
2 曾政;布鲁氏菌新型疫苗的构建及其免疫原性研究[D];西北农林科技大学;2004年
3 杨帆;鸡传染性支气管炎病毒分离株IBV_(WHNJ)M基因DNA疫苗研究[D];四川农业大学;2004年
4 杨璇;癌胚抗原DNA疫苗的构建及佐剂对其免疫效应的影响[D];郑州大学;2002年
5 黄力;口蹄疫多表位DNA疫苗的免疫原性[D];河北医科大学;2004年
6 张强哲;H5亚型禽流感病毒HA DNA疫苗的研究[D];西北农林科技大学;2003年
7 蒋英;白细胞介素12对结核病DNA疫苗效应的增强作用[D];重庆医科大学;2003年
8 蒋文明;以减毒沙门氏菌为载体传递猪繁殖与呼吸综合征病毒DNA疫苗的口服免疫应答[D];南京农业大学;2004年
9 贾文影;新孢子虫PO基因的真核表达及DNA疫苗的初步研究[D];延边大学;2010年
10 罗彬;犬瘟热病毒H基因克隆分析及DNA疫苗研究[D];中国农业科学院;2010年
本文编号:2178878
本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/2178878.html