当前位置:主页 > 医学论文 > 病理论文 >

HSV-2多表位复合DNA疫苗的构建与诱导小鼠免疫效果的研究

发布时间:2018-08-12 11:14
【摘要】: 目的构建单纯疱疹病毒2型(HSV-2)糖蛋白gD、gB、gC和早期表达蛋白ICP 27的多表位复合DNA疫苗和免疫佐剂IL2质粒,以及在复合疫苗质粒基础上修饰的信号肽质粒与泛素化质粒,并探讨其诱导小鼠机体免疫应答的能力。 方法国内HSV-2野生株经PCR鉴定后利用PCR技术从其基因组中扩增出HSV-2 ICP27 377-459、gD146-179、gD223-306、gB529-606、gC247-282、gD1-77六个基因片段,PCR鉴定后按先后顺序,采用多基因片段一步酶切连接法获得HV融合基因片段,经pGEMT载体克隆后定向插入真核表达质粒pcDNA3.1载体中,构建出重组真核表达质粒HV-pcDNA3.1,并对其进行酶切分析及测序鉴定。 PCR扩增gD146-179信号肽片段,进一步酶切连接构建重组质粒gDs-HV-his-pcDNA3.1,并对其进行酶切分析及测序鉴定。 PCR扩增人基因组DNA和HSV-2基因组中泛素全长基因和HSV-2 ICP27 377-459,酶切连接获得融合基因片段,插入真核表达质粒pcDNA3.1载体中,构建出重组质粒Ub-ICP-pcDNA3.1,并对其进行酶切分析及测序鉴定。 PCR扩增人IL-2信号肽基因和人IL-2尾段基因,取上述两段PCR扩增产物作为融合PCR的模板,扩增IL-2 cDNA全长基因,连入pcDNA3.1质粒中,构建出重组质粒IL-2-pcDNA3.1,并对其进行酶切分析及测序鉴定。 C57/BL6雌性6周龄小鼠40只,随机分为8组,每组均5只,根据免疫的质粒类型和免疫方式的不同,各组依次为pcDNA3.1(空质粒对照)、HV-pcDNA3.1、HV-pcDNA3.1+IL2-pcDNA3.1、gDs-HV-his-pcDNA3.1、gDs-HV-his-pcDNA3.1+IL2-pcDNA3.1、Ub-ICP-pcDNA3.1和HV-pcDNA3.1、HV-pcDNA3.1+IL2-pcDNA3.1。 免疫前先用特异性抗原刺激,前6组小鼠每只用5ug的相应质粒(与IL2共表达的组用5+5ug的量)和1ug的脂质体充分混合,,20min后转染到同批次C57/BL6雌性鼠脾淋巴细胞中,37℃、5%CO_2培养4h后注射入小鼠皮下;后2组小鼠也用5ug的相应质粒(与IL2共表达的组用5+5ug的量)直接注射到双侧胫骨前肌中。14天后正式免疫,前6组小鼠每只用100ug的相应质粒(与IL2共表达的组用100+100ug的量)和10ug的脂质体充分混合,20min后注入小鼠双侧胫骨前肌中;后2组小鼠也用100ug的相应质粒(与IL2共表达的组用100+100ug的量)直接注入小鼠双侧胫骨前肌中。14天后再加强免疫一次,方法和剂量与正式免疫完全一致。 加强免疫后3周小鼠断尾取血,分离血清。断颈处死小鼠取脾,分离淋巴细胞。ELISA检测小鼠血清HSV-2特异性IgG、IL-2和IFN-γ,MTT法检测小鼠脾T淋巴细胞特异性增殖,乳酸脱氢酶法检测杀伤性T淋巴细胞(CTL)功能和流式细胞仪检测CD4+/CD8+T细胞亚群分类。 结果构建的HV-pcDNA3.1质粒、IL2-pcDNA3.1质粒、Ub-ICP-pcDNA3.1质粒、gDs-HV-his-pcDNA3.1质粒经酶切鉴定并进行DNA测序,测序结果正确,表明已成功构建出HSV-2多表位复合DNA疫苗。 免疫小鼠后实验结果显示:gDs-HV-his-pcDNA3.1与IL2-pcDNA3.1联合免疫后体液免疫最强,特异性IgG效价达到400倍左右;T细胞表面信号分子CD4的阳性率与空载体pcDNA3.1组相比有显著差异(P<0.05)。而HV-pcDNA3.1与IL2-pcDNA3.1联合免疫后细胞免疫水平最强,特异性T淋巴细胞的刺激指数SI达到2.75左右,而空质粒对照组为0.7左右;淋巴细胞杀伤实验CTL反应的杀伤率(效靶比为50:1时)接近50%,而空质粒对照组为8%左右;T细胞表面信号分子CD8的阳性率与空载体pcDNA3.1组相比也有显著差异(P<0.05),但CD4~+/CD8~+的值无显著差异(P>0.05);血清中细胞因子IL2和IFN-γ含量检测结果显示:IL2水平(ng/L)为1421.16±220.98,而空质粒对照组为685.21±104.20;IFN-γ水平(ng/L)为1956.19±219.60,而空质粒对照组为547.71±189.33。 另一组有关不同免疫方式比较的实验总体上看则说明了脂质体包裹的DNA疫苗比单纯的裸DNA注射法能显著提高免疫活性,若用脂质体包裹起来同时转染IL2质粒和复合疫苗质粒则更强。 结论 1.成功构建了HSV-2多表位复合DNA疫苗,包括质粒HV-pcDNA3.1、信号肽质粒gDs-HV-his-pcDNA3.1、泛素化质粒Ub-ICP-pcDNA3.1和佐剂质粒IL2-pcDNA3.1。 2.小鼠动物实验表明,我们构建的疫苗质粒HV-pcDNA3.1和信号肽质粒gDs-HV-his-pcDNA3.1能有效诱导小鼠体液免疫和细胞免疫应答,与佐剂质粒IL2-pcDNA3.1共同免疫效果更强。信号肽质粒gDs-HV-his-pcDNA3.1与佐剂质粒IL2-pcDNA3.1共注射诱导的体液免疫反应最强,而质粒HV-pcDNA3.1与佐剂质粒IL2-pcDNA3.1共注射诱导的细胞免疫反应最强。 3.质粒经脂质体包裹并在免疫前通过淋巴细胞体外转染小鼠皮下预注射方法比单纯裸质粒注射方法能明显提高体液免疫和细胞免疫反应。 4.泛素化质粒Ub-ICP-pcDNA3.1不能诱导有效的体液免疫和细胞免疫应答。
[Abstract]:Objective To construct a multi-epitope compound DNA vaccine and immune adjuvant IL-2 plasmid of herpes simplex virus-2 (HSV-2) glycoprotein gD, gB, gC and early expression protein ICP-27, as well as a signal peptide plasmid and a ubiquitination plasmid modified on the basis of the composite vaccine plasmid, and to investigate the ability of the plasmid to induce immune response in mice.
Methods Six gene fragments of HSV-2 ICP27 377-459, gD146-179, gD223-306, gB529-606, gC247-282 and gD1-77 were amplified from the genome of HSV-2 wild strain in China by PCR. The fragments of HV fusion gene were cloned by pGEMT vector and inserted directionally. The recombinant eukaryotic expression plasmid HV-pcDNA3.1 was constructed and identified by enzyme digestion and sequencing.
The gD146-179 signal peptide fragment was amplified by PCR, and the recombinant plasmid gDs-HV-his-pcDNA3.1 was constructed by enzyme digestion and ligation.
Full-length ubiquitin gene and HSV-2 ICP27 377-459 in human genome DNA and HSV-2 genome were amplified by PCR. Fusion gene fragments were obtained by enzyme digestion and ligation. The recombinant plasmid Ub-ICP-pcDNA3.1 was constructed by inserting into eukaryotic expression plasmid pcDNA3.1 vector. The recombinant plasmid Ub-ICP-pcDNA3.1 was analyzed by enzyme digestion and sequenced.
The full-length gene of IL-2 cDNA was amplified by PCR. The recombinant plasmid IL-2-pcDNA3.1 was constructed and identified by restriction enzyme digestion and sequencing.
C57/BL6 female mice aged 6 weeks were randomly divided into 8 groups. Each group consistof 5 mice randomly divided into 8 groups. According to the different immunplasmid types and immunimmunmodes, each group was pcDNA3.1 (blankplasmid control), HV-pcDNA3.1, HV-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, HV-pcDNA3.1+IL2-pcDNA3.1, gDs-HV-HV-his-pcDNA3.1, gDs-HV-HV-pcDNA3.1+his-pcDNA3.1, gDDs-HDs-HV-HV-pcDNA3.1+IL2-ppcDNA 3.1.
The mice in the first six groups were stimulated with specific antigens before immunization. Each mouse in the first six groups was adequately mixed with the corresponding plasmids of 5+5 UG (the amount of 5+5 UG in the group co-expressed with IL2) and the liposome of 1 ug. The spleen lymphocytes of the same batch of C57/BL6 female mice were transfected 20 minutes later. The spleen lymphocytes were cultured at 37 C for 4 hours with 5% CO_2 and injected subcutaneously into the mice in the second two groups with the corresponding plasmids of 5 UG (the L2 co-expression group was injected directly into bilateral anterior tibial muscles with the dose of 5+5ug. 14 days later, the mice in the first six groups were immunized with 100 UG of corresponding plasmids (100+100ug of the group co-expressed with IL2) and 10 UG of liposome. After 20 minutes, the mice in the latter two groups were injected into bilateral anterior tibial muscles with 100 UG of corresponding plasmids (with IL2). The expression group was injected directly into the bilateral anterior tibial muscles of mice with the dose of 100 + 100 ug. The method and dose of the immunotherapy were completely consistent with the formal immunization.
Three weeks after the immunization, the mice were killed by neck-cutting and the spleens were taken out for lymphocyte isolation. The specific IgG, IL-2 and IFN-gamma of HSV-2 in serum were detected by ELISA, the specific proliferation of splenic T lymphocyte was detected by MTT, the killer T lymphocyte (CTL) function was detected by lactate dehydrogenase assay and the CD4 + / CD8 + T cell was detected by flow cytometry. Classification of subgroups.
Results The constructed HV-pcDNA3.1 plasmid, IL2-pcDNA3.1 plasmid, Ub-ICP-pcDNA3.1 plasmid and gDs-HV-his-pcDNA3.1 plasmid were identified by enzyme digestion and DNA sequencing. The results showed that the HSV-2 multi-epitope compound DNA vaccine was successfully constructed.
The results showed that the combined immunization of gDs-HV-his-pcDNA3.1 and IL2-pcDNA3.1 had the strongest humoral immunity, and the specific IgG titer was about 400 times. The positive rate of CD4 on T cell surface was significantly different from that of pcDNA3.1 group (P < 0.05). The stimulus index SI of specific T lymphocyte reached about 2.75, while that of blank plasmid control group was about 0.7; the killing rate of CTL reaction in lymphocyte killing experiment (the effective target ratio was 50:1) was close to 50%, while that of blank plasmid control group was about 8%; the positive rate of CD 8 on T cell surface signal molecule was also obvious compared with blank vector pcDNA3.1 group. There was significant difference (P < 0.05), but there was no significant difference (P > 0.05) in CD4 + / CD8 +; the levels of IL 2 and IFN - gamma in serum were 1421.16 + 220.98, 685.21 + 104.20 in blank plasmid control group, 1956.19 + 219.60 in ng / L, 547.71 + 189.33 in empty plasmid control group.
Another group of experiments comparing different immune modes showed that liposome-encapsulated DNA vaccines could significantly improve the immune activity compared with bare DNA vaccines, and the liposome-encapsulated DNA vaccines could transfect IL2 plasmids and composite vaccine plasmids simultaneously.
conclusion
1. HSV-2 multi-epitope DNA vaccine was successfully constructed, including plasmid HV-pcDNA3.1, signal peptide plasmid gDs-HV-his-pcDNA3.1, ubiquitinated plasmid Ub-ICP-pcDNA3.1 and adjuvant plasmid IL2-pcDNA3.1.
2. Animal experiments in mice showed that the Vaccine Plasmid HV-pcDNA3.1 and the signal peptide plasmid gDs-HV-his-pcDNA3.1 could effectively induce humoral and cellular immune responses in mice, and the co-immunization effect was stronger with the adjuvant plasmid IL2-pcDNA3.1. The signal peptide plasmid gDs-HV-his-pcDNA3.1 and the adjuvant plasmid IL2-pcDNA3.1 co-injected to induce humoral immunity. The strongest immune response was induced by co-injection of plasmid HV-pcDNA3.1 and adjuvant plasmid IL2-pcDNA3.1.
3. Subcutaneous pre-injection of plasmid encapsulated in liposome and transfected with lymphocytes in vitro before immunization can significantly improve humoral and cellular immune responses compared with bare plasmid injection.
4. ubiquitin plasmid Ub-ICP-pcDNA3.1 can not induce effective humoral and cellular immune responses.
【学位授予单位】:复旦大学
【学位级别】:博士
【学位授予年份】:2006
【分类号】:R392;R752.1

【相似文献】

相关期刊论文 前10条

1 吴春利;程小雯;吕星;房师松;王昕;;A型流感病毒M基因DNA疫苗载体构建及免疫性研究[J];中国热带医学;2011年07期

2 齐文娟;方强;;寄生虫病DNA疫苗研究进展[J];中国血吸虫病防治杂志;2011年03期

3 李晨晨;于继云;姜敏;涂亦娴;马晓林;张富春;;草原兔尾鼠卵透明带3DNA疫苗pVAX1-sig-LTB-lZP3-C3d3的构建表达及其免疫不育的研究[J];细胞与分子免疫学杂志;2011年09期

4 邓璐;邹墨;刘艳;罗恩杰;;DNA疫苗的转运途径及其安全性研究进展[J];医学动物防制;2011年08期

5 张亮;阎瑾琦;王越;肖毅;高昆;董金凯;王博;于继云;;可复制型抗肿瘤DNA疫苗PSCK-2PFcGB的构建及体内外表达[J];南方医科大学学报;2011年06期

6 胡方靖;武军驻;;pIHsp65GM的构建及其对结核杆菌感染小鼠的保护[J];免疫学杂志;2011年08期

7 张阳;王英丽;;MUC1基因疫苗对乳腺肿瘤抑制的实验研究[J];中国妇幼保健;2011年21期

8 ;[J];;年期

9 ;[J];;年期

10 ;[J];;年期

相关会议论文 前10条

1 居巍;刘君炎;;结核杆菌HSP65佐剂DNA疫苗的实验研究[A];第6次全国微生物学与免疫学大会论文摘要汇编[C];2004年

2 姜秀云;何昭阳;;活体电穿孔法导入DNA:牛结核病免疫接种新技术[A];人畜共患传染病防治研究新成果汇编[C];2004年

3 靳彦文;钟辉;马清钧;;恶性疟原虫DNA疫苗的安全性研究[A];中国生物工程学会第三次全国会员代表大会暨学术讨论会论文摘要集[C];2001年

4 田洁;刘君炎;;ConA与结核杆菌HSP65DNA疫苗联合应用的研究[A];湖北省暨武汉市免疫学会第八届学术会议论文集[C];2003年

5 熊金虎;赵民;邱小萍;伍欣星;;人乳头瘤病毒嵌合型DNA疫苗的构建及其免疫效应研究[A];湖北省暨武汉市生物化学与分子生物学学会第七届第十四次学术年会论文摘要集[C];2003年

6 江云波;方六荣;肖少波;牛传双;张辉;陈焕春;;修饰的ORF5基因增强猪繁殖与呼吸综合征DNA疫苗的免疫反应[A];中国畜牧兽医学会畜牧兽医生物技术学分会暨中国免疫学会兽医免疫分会第六次研讨会论文集[C];2005年

7 吴长有;;DNA疫苗与免疫记忆[A];2005全国第二届核酸疫苗研讨会论文集[C];2005年

8 崔保安;魏战勇;杨明凡;张素梅;;DNA疫苗免疫佐剂的研究进展[A];中国畜牧兽医学会家畜传染病学分会成立20周年庆典暨第十次学术研讨会论文集(上)[C];2003年

9 杨慧兰;葛梦林;杨太成;刘荣卿;;单纯疱疹病毒gD2 DNA疫苗免疫动物诱导的细胞免疫应答[A];2003中国中西医结合皮肤性病学术会议论文汇编[C];2003年

10 张冉;易新元;曾宪芳;;日本血吸虫新基因克隆及DNA疫苗的构建和保护性研究[A];中国动物学会全国第九次寄生虫学学术讨论会论文摘要集[C];2003年

相关重要报纸文章 前10条

1 蒋明 周汉桥;DNA疫苗研究取得突破[N];健康报;2005年

2 林明贵 金关甫;DNA疫苗 战胜结核的希望[N];健康报;2003年

3 ;防治早老性痴呆DNA疫苗问世[N];新华每日电讯;2004年

4 ;DNA疫苗“饿”杀小鼠肿瘤[N];医药经济报;2003年

5 陈勇;西尼罗病毒DNA疫苗开始临床试验[N];健康报;2005年

6 梅子;期待从今天开始[N];医药经济报;2001年

7 刘恕;艾滋病疫苗离我们还有多远[N];科技日报;2005年

8 本报记者 王玲 柯玲;中国艾滋病疫苗与时间赛跑[N];经济日报;2005年

9 曲国斌;征服艾滋病不是梦[N];健康报;2001年

10 何雁;何大一:倾心祖国艾滋病防治[N];人民日报海外版;2005年

相关博士学位论文 前10条

1 张洪英;口蹄疫多表位DNA疫苗的免疫原性和安全性研究[D];第二军医大学;2003年

2 张静;轮状病毒分子流行病学调查及脂质体DNA疫苗研究[D];重庆医科大学;2002年

3 王涛;嗜肺军团菌mip基因DNA疫苗初步研究[D];四川大学;2004年

4 宋立强;异种同源钙激活Cl~-通道DNA疫苗对小鼠哮喘模型的防治作用[D];第四军医大学;2004年

5 时阳;MAGE-1与IL-18共表达DNA疫苗的构建及体内外功能验证[D];吉林大学;2004年

6 郭瀛军;猪带绦虫囊虫病DNA疫苗的中试及免疫效力研究[D];第二军医大学;2004年

7 张梦寒;汉城病毒M片段和汉滩病毒部分S片段核酸疫苗pEGFP-M-S的构建及基因免疫研究[D];苏州大学;2005年

8 焦解歌;猪Endoglin DNA疫苗诱导抗肿瘤血管生成机理研究[D];中南大学;2005年

9 郭慧琛;O型口蹄疫病毒多基因DNA疫苗的研制[D];中国农业科学院;2004年

10 张含;口服DNA疫苗防治实验性脉络膜血管新生[D];中国医科大学;2005年

相关硕士学位论文 前10条

1 张恒;鸡贫血病毒DNA疫苗的研究[D];山东师范大学;2003年

2 曾政;布鲁氏菌新型疫苗的构建及其免疫原性研究[D];西北农林科技大学;2004年

3 杨帆;鸡传染性支气管炎病毒分离株IBV_(WHNJ)M基因DNA疫苗研究[D];四川农业大学;2004年

4 杨璇;癌胚抗原DNA疫苗的构建及佐剂对其免疫效应的影响[D];郑州大学;2002年

5 黄力;口蹄疫多表位DNA疫苗的免疫原性[D];河北医科大学;2004年

6 张强哲;H5亚型禽流感病毒HA DNA疫苗的研究[D];西北农林科技大学;2003年

7 蒋英;白细胞介素12对结核病DNA疫苗效应的增强作用[D];重庆医科大学;2003年

8 蒋文明;以减毒沙门氏菌为载体传递猪繁殖与呼吸综合征病毒DNA疫苗的口服免疫应答[D];南京农业大学;2004年

9 贾文影;新孢子虫PO基因的真核表达及DNA疫苗的初步研究[D];延边大学;2010年

10 罗彬;犬瘟热病毒H基因克隆分析及DNA疫苗研究[D];中国农业科学院;2010年



本文编号:2178878

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/2178878.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c404f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com