大鼠三叉神经中脑核神经元对GABA的反应及其相关发育学研究
[Abstract]:It is well known that gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter widely distributed in the mammalian central nervous system. It can bind to the corresponding GABA receptors to perform the corresponding physiological functions. In addition, the expression of GABAAR alpha 1 and GABAAR alpha 3 receptor subtypes was also observed in Vme neurons. Although Vme God was reported on brain slices, the expression of GABAAR alpha 1 and GABAAR alpha 3 receptor subtypes was also observed in Vme neurons. The excitatory response of meridians to GABA is still unclear due to methodological limitations. Cationic-Cl-cotransporters responsible for chloride transport may be involved in the excitatory response of GABA in Vme neurons. However, the related studies have not been reported so far.
Cationic-Cl-cotransporters play a major role in maintaining the balance of intracellular and extracellular Cl-concentrations. Of the seven reported cationic-Cl-cotransporters, only four cationic-Cl-cotransporters KCC1, KCC2, KCC3 and NKCC1 are expressed in the nervous system. Among them, KCC2 transports Cl-outward in neurons, while NKCC1 transports Cl-outward in neurons. The expression and change of KCC2 and NKCC1 in Vme neurons during postnatal development are rarely reported, and this change may be closely related to the effect of chloride channel opening. Contact.
Parvalbumin (PV) is a kind of calcium-binding protein. Previous studies have shown that PV is specifically expressed in the somas and processes of primary afferent neurons (such as large dorsal root ganglia and Vme) during development. At present, PV has been widely used as a specific marker of primary afferent neurons of proprioception. In addition, studies on postnatal development of Vme have also shown that PV is expressed in almost all Vme neurons. However, whether NKCC1, KCC2 and PV coexist in the postnatal development of Vme, and whether the coexistence ratio has changed, are these changes in relative quantity related to the changes in protein expression If there is no agreement, there is no definite answer.
Based on this, the following studies were carried out in this paper: (1) Single-cell patch clamp technique with end-buckle of mechanical separation band was used to observe the response of Vme neurons to GABA; (2) Western blotting and image analysis were used to observe the expression of NKCC 1 and KCC 2 in Vme neurons during postnatal development; (3) Immunofluorescence was used to observe the expression of NKCC 1 and KCC 2 in Vme neurons; (3) Immunofluores The coexistence of NKCC1 and KCC2 with PV in Vme neurons during postnatal development was observed by histochemical double labeling technique.
The first part is the response of neurons in the trigeminal mesencephalic nucleus to GABA in rats.
In this study, we observed the response of Vme neurons to GABA by single-cell patch clamp technique with end-buckle of mechanical separation. The results were as follows: when the clamping voltage was - 70 mV, the inward mPSCs were recorded on all Vme neurons, the average amplitude of mPSCs was 24 6550 The inversion potential was about - 30 mV, which was equivalent to the Cl-equilibrium potential calculated by Nernst equation, and the current induced by presynaptic GABA was completely blocked when the GABAA receptor-specific antagonist Bicuculline (5 mu M) was administered. After elution, the mPSCs induced by GABA returned to the previous level.
These results indicate that GABA released from the presynaptic terminal cingulum binds to GABAA receptors distributed in the postsynaptic region and plays a regulatory role in Vme neurons. After GABAA receptors are activated, chloride channels are opened and chloride flow in Vme neurons in vivo and in vitro forms the basis of GABA's effect on Vme neurons.
Part 2 Expression and changes of NKCC1 and KCC2 in trigeminal mesencephalic nucleus neurons during postnatal development in rats
The expression of KCC 2 and NKCC1 in Vme neurons was observed by immunohistochemistry and Western blotting combined with image analysis in 0,4,7,10,14,21 postnatal male rats. The expression of NKCC1 began to express in the meta-cells, but the expression was relatively low. The expression of NKCC1 increased gradually with the development time, and reached the adult level at P10. Image-pro plus software was used to analyze the gray level of NKCC1 in Vme of six rats of different ages: P 0, P 4, P 7, P 10, P 14, P 21. Compared with P10, P14 and P21, the expression of KCC2 was weaker from P0 to P21, and there was no significant difference among different ages (P 0.05).
These results suggest that NKCC1 is gradually expressed at a high level during the postnatal development of Vme neurons, while KCC2 is always expressed at a low level, suggesting a high level of chloride ion in Vme neurons during adulthood. It is speculated that the increase of intracellular chloride concentration with the development of Vme neurons may be closely related to the effect of GABA on Vme neurons in adulthood.
The coexistence of NKCC1, KCC2 and PV in trigeminal mesencephalic nucleus neurons during postnatal development in rats
In this study, the coexistence of NKCC1, KCC2 and PV in P4, P7, P10, P14 and P21 was observed by immunofluorescence double labeling technique. The results showed that the coexistence rate of NKCC1 and PV increased gradually with development, and NKCC1 was almost expressed in all Vme neurons in adulthood. No double-labeled neurons were observed at any of the five different time points. In the positive control experiment, the expression of KCC2 was observed in the Purkinje cell layer of the cerebellum. The molecular basis of excitatory response.
【学位授予单位】:第四军医大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:R338
【相似文献】
相关期刊论文 前10条
1 洪艳;梁文妹;李一欣;谢莉;;IFN-γ、IL-4、TGF-β1在不同发育阶段家兔直肠组织中的表达[J];世界华人消化杂志;2011年18期
2 黄露露;于世英;;神经病理性疼痛的中枢敏化发病机制[J];中国疼痛医学杂志;2011年08期
3 薛艳丽;;吃猪蹄治神经衰弱[J];食品与健康;2002年03期
4 王斌生;尤竹燕;解敏;李珍;王烈成;孔德虎;;介导大鼠海马CA1区癫痫样活动的离子型谷氨酸受体的变化[J];安徽医科大学学报;2011年07期
5 吴文波;梁战华;奚和明;宋春莉;周丽娜;;痉挛性斜颈患者瞬目反射的电生理研究[J];中国实验诊断学;2011年08期
6 江伟;;星形胶质细胞活化对神经病理性疼痛的影响[J];上海医学;2011年06期
7 安永超;任维;杨唐斌;;大麻素Ⅰ型受体生理调节作用研究进展[J];中国公共卫生;2011年07期
8 刘友红;;疼痛对新生儿的影响[J];医学信息(上旬刊);2011年05期
9 戴维维;杨卓;;小鼠模型Dravet综合征的病生理改变及治疗[J];天津医药;2011年08期
10 汪鑫;施贤清;王宇辉;叶八宁;;成功救治破伤风患者1例[J];贵阳医学院学报;2011年03期
相关会议论文 前10条
1 黄莺;Yoon K;Ko H;Morozov A;;5-HT3受体激活抑制海马CA1区的γ振荡[A];中国生理学会第九届全国青年生理学工作者学术会议论文摘要[C];2011年
2 易芳;龙莉莉;姜婷;吴志国;梁静慧;肖波;;癫痫大鼠海马SS、NPY中间神经元数目变化及轴突出芽的实验研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
3 曹少锋;李定;袁青;关欣;王一飞;徐晨;;c-mos在小鼠睾丸生后发育中的时空表达特性研究[A];第一届中华医学会生殖医学分会、中国动物学会生殖生物学分会联合年会论文汇编[C];2007年
4 刘健;桂振华;;帕金森病模型大鼠内侧前额叶皮层中间神经元的活动及5-HT_3受体的调节作用[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
5 肖波;龙莉莉;易芳;陈锶;毕方方;吴志国;;匹罗卡品致痫大鼠海马GABA能中间神经元数目变化及其轴突出芽的研究[A];第十一届全国神经病学学术会议论文汇编[C];2008年
6 朱新宇;朱道立;王康乐;;家兔与大鼠胫骨前肌的生后发育[A];中国细胞生物学学会第八届会员代表大会暨学术大会论文摘要集[C];2003年
7 郭敏;马云胜;王灵均;;小鼠肾脏肾小体的胚胎发生和生后发育[A];解剖学杂志——中国解剖学会2002年年会文摘汇编[C];2002年
8 王莹;谢琨;高红英;林龙年;;海马CA1区中间神经元在睡眠-清醒节律周期中的活动规律[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
9 Wen Wang;Ying Wang;Fang Yang;Jing Chen;Qingyun Quan;Feng Yang;Shengxi Wu;;慢性癫痫形成过程中海马GABA能神经元发生研究[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年
10 王殿仕;井口敞惠;李继硕;东英穗;;大鼠海马CA1区锥体神经元突触后电流的生后发育[A];中国生理学会第21届全国代表大会暨学术会议论文摘要汇编[C];2002年
相关重要报纸文章 前7条
1 姜晨怡;让往事清晰如斯[N];科技日报;2008年
2 郭荣惠;林乾;β-内酰胺类抗生素的另类作用:有望治疗神经疾病[N];中国医药报;2005年
3 张立峰;常吃猪蹄缓解失眠[N];健康时报;2007年
4 侯杰 文仪;成年鼠大脑皮层能产生新的神经元[N];中国医药报;2005年
5 记者 张晔 通讯员 刘宁春;镇痛新招——“超氧疗法”[N];科技日报;2006年
6 张远;常用胃肠动力药点评[N];医药导报;2007年
7 郭小娟;吃猪蹄防神经衰弱[N];大众科技报;2001年
相关博士学位论文 前10条
1 刘涛;大鼠三叉神经中脑核神经元对GABA的反应及其相关发育学研究[D];第四军医大学;2007年
2 易芳;癫痫大鼠海马GABA能中间神经元的动态变化及突触重建研究[D];中南大学;2010年
3 邝慧;海马CA1区锥体神经元和多种中间神经元在情景事件编码中的作用[D];华东师范大学;2011年
4 王殿仕;大鼠海马CA1区锥体神经元突触后电流和树突分支的生后发育[D];第四军医大学;2002年
5 席栋;Ⅱ型mGluR激动剂改善MK-801诱导的前额叶NMDA受体功能紊乱的实验研究[D];山东大学;2009年
6 陈涛;内吗啡肽在导水管周围灰质发挥镇痛效应的机制[D];第四军医大学;2007年
7 朱宁;几种与神经可塑性有关的分子在出生后小鼠和鸣禽脑内的动态表达[D];北京师范大学;2006年
8 祁英杰;神经甾体硫化孕烯醇酮对大鼠前额叶皮层内侧区中间神经元兴奋性突触传入的作用和机制[D];复旦大学;2008年
9 陆新江;海马区SPAR参与新生小鼠间歇低氧暴露诱导的空间学习记忆增强作用[D];浙江大学;2009年
10 龙莉莉;匹罗卡品致痫大鼠海马GABA能中间神经元动态变化及其突触联系的研究[D];中南大学;2008年
相关硕士学位论文 前10条
1 何剑琴;甲状腺功能低下大鼠听觉诱发电位生后发育的研究[D];暨南大学;2003年
2 高洁;豚鼠听觉分辨认知过程背侧海马神经元放电研究[D];第三军医大学;2003年
3 王莹;海马CA1区中间神经元在体放电模式[D];华东师范大学;2007年
4 房雅娜;匹罗卡品致痫大鼠海马GABA能中间神经元SS及PVmRNA表达变化的研究[D];中南大学;2009年
5 王娴;核因子κB参与氯胺酮所致微清蛋白阳性中间神经元表型缺失[D];南京大学;2011年
6 黄维;豚鼠空间分辨认知过程背侧海马脑电及神经元放电研究[D];第三军医大学;2005年
7 高红英;海马CA1区神经元在体簇状放电模式[D];华东师范大学;2008年
8 牛瑞芳;GABA转运体阻断增强海马神经元活动同步性[D];华东师范大学;2009年
9 王瑞峰;大鼠生后ER和NOS在视上核和室旁核的共存表达[D];山西医科大学;2007年
10 胡波;豚鼠海马齿状回神经元在追踪性眨眼条件反射巩固过程中放电活动研究[D];第三军医大学;2006年
,本文编号:2218062
本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/2218062.html