约氏疟原虫红外期相关基因及宿主抗疟原虫子孢子感染免疫分子研究
[Abstract]:Anopheles mosquito-borne malaria is a tropical infectious disease that seriously endangers human health. It has high morbidity and mortality in people around the world, affecting economic and social development in epidemic areas, threatening nearly 40% of the world's population in more than 100 countries, Especially in tropical and sub-tropical areas. Despite the long-term efforts of malaria workers to explore, there are currently about 3-500 million people worldwide, about 1-3 million people die due to malaria infection, most of whom are children under five years of age. In the southern region of our country, especially in mountainous areas, there is still a large-scale epidemic in a particular environment. In recent years, with the emergence and rapid diffusion of P-P resistant strains and the increase of mosquito-mediated resistance to insecticides, there is no effective antimalarial vaccine, which brings great difficulties to the prevention and treatment of malaria. Malaria control is facing enormous challenges and seeks new, efficient and safe malaria control strategies. Malaria is transmitted by infectious mosquito bites. After the sporozoites of Plasmodium vivax enter the blood circulation, they can quickly adhere to and invade the liver cells. After the proliferation of the infrared period, the invasion of red blood cells leads to malaria. The development of interfering merozoites in hepatocytes is the prevention of malaria transmission and clinical symptoms. Therefore, the development of vaccine targeting Plasmodium vivax can not only prevent the pathological damage caused by Plasmodium vivax, but also block the gamete. However, the high background interference caused by the host hepatocytes, liver tissue, However, with the development of molecular biology and biochemical technology, the research on the infrared period of P. P. has become more and more affected The antigenic difference and variation of P. falciparum are very common, and have very complex antigenic structure and many different antigen table positions. Most of the antigen table bits have stage specificity in different periods, and there are also species and strains of P. falciparum. has the characteristics of weak antigenicity and the like, and can be caused by invading the host body. Complex immune response. T-cell immunity plays an important role in the immune response caused by P. falciparum. Therefore, the role of co-stimulatory molecules inducing T-cell activation in infrared immunity is malaria therapy. On the basis of the development of vaccine, this topic was used to isolate the sporozoites of Plasmodium yoelii from the tail vein to infect the rats. According to the mammalian host model of Anopheles sinensis, two aspects of the immune response produced by Plasmodium vivax in the host body and the host immune system following the stimulation of Plasmodium vivax were studied: On the one hand, the technique of differential display PCR (DD-PCR) was applied to screen. The cDNA of Plasmodium vivax IR was cloned to TA vector by comparative analysis. According to the result of sequence homology analysis and function prediction, the gene related to the development of Plasmodium vivax was estimated. On the other hand, RT-PCR was used to react with direct immunofluorescence. Method of co-focusing technique, from gene and co-stimulatory molecule expression to host to Plasmodium vivax stimulation The immune response produced was studied. The experimental content and the knot The fruit mainly comprises the following aspects: 1. Aiming at the characteristics of high content of A + T (> 70%) of Plasmodium gene A + T, this experiment has been changed. According to the A + T content of the DD-PCR primer, a primer capable of specifically amplifying the A + T content of the Plasmodium gene from the sample of liver tissue and Plasmodium vivax is designed, the primer is combined with the DD-PCR technology, and the purified merozoite is bypassed. According to the technical barrier, the Plasmodium falciparum gene is specifically amplified. The obtained nucleic acid sequence is accessed into the GenBank database, and the sequence homology comparison is carried out through the Blast query, and the results are shown in 21 clones to be tested: 8 genes related to the infrared period of Plasmodium yoelii (PyHs7, PyHs5, PyHs6, PyHs7, PyHs8, PyHs9 PyHs10, PyHs11), in which PyHs5 is similar to Plasmodium vivax glucosamine phosphate utase (AGM), PyHs5 has homology with Plasmodium falciparum erythrocyte membrane protein 3 (EMP3), PyHs6, PyHs7, PyHs8, PyHs9, PyHs1 0. PyHs11 is a functionally unknown gene. The molecular mechanism of long development provides a theoretical foundation. By using the RT-PCR method, we can qualitatively and quantitatively analyze the host immune-related genes B7.1, B7.2, CD28-7721, IFN-, and explore the change of immune-related genes in mammalian hosts after Plasmodium infection. Conditions: There was little change in expression of B7.1 in the host body after infection of Plasmodium yoelii. The transcription level of P <0.05 was significantly increased (P <0.05). By combining direct immunofluorescence and laser co-focusing, the expression and localization of B7. 1 and B7.2 of the co-stimulatory molecules after Plasmodium infection were observed. The molecular expression of B7.1 and B7.2 was increased, in which the rising rate of B7.1 molecules began to decrease after 72h, while the up-regulation of B7.2 molecule increased rapidly after 48h reached the peak value, and then fell back at 72h; in the 2-72h after plasvax infection, the table of B7.2 In addition, laser scanning confocal microscopy showed that after Plasmodium infection, the expression of B7.1, B7.2 molecules in macrophages increased with time. The point is delayed from the cytoplasm and the nucleus gradually transferred to the cell membrane. According to this phenomenon, we can speculate that after the stimulation of P. P., the co-stimulatory molecule begins to activate. In conclusion, we studied some immune molecules of Plasmodium vivax development-related molecule and host anti-malaria parasite from parasites and hosts, and systematically discussed the merozoite of Plasmodium vivax. Molecular mechanism of sub-cell development and immune response induced by Plasmodium vivax, and preliminary study on the host immune cells and effector molecules after Plasmodium infection in the expression level of genes and immune molecules
【学位授予单位】:第三军医大学
【学位级别】:硕士
【学位授予年份】:2006
【分类号】:R392
【相似文献】
相关期刊论文 前10条
1 王艳艳;张健;徐文岳;段建华;黄复生;;蒿甲醚对约氏疟原虫在斯氏按蚊体内发育影响[J];成都医学院学报;2011年02期
2 张健;王英;李振伦;黄复生;;与按蚊唾液腺抗疟原虫子孢子入侵相关的差异表达cDNA文库构建[J];成都医学院学报;2011年02期
3 张锡林;王英;陈继德;宋蓓;;大劣按蚊感染约氏疟原虫defensins基因的克隆及生物信息学分析[J];成都医学院学报;2011年02期
4 周桃莉;付雍;王艳艳;丁艳;谭章平;徐文岳;;抗生素对重组约氏疟原虫BY265株感染斯氏按蚊的影响[J];成都医学院学报;2011年02期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关会议论文 前10条
1 郭秀梅;王东;王恒;;约氏疟原虫疫苗候选抗原基因Pydyn的表达及其免疫保护性的研究[A];中国动物学会第七届全国青年寄生虫学工作者学术讨论会论文摘要集[C];2002年
2 高吉青;刘升发;韩伟;吴汉洲;王世媛;杨彩霞;洪凌仙;章军;周克夫;;胸腺素原(ProTα)作为约氏疟原虫疫苗免疫佐剂的研究[A];2011新型疫苗与抗体创制关键技术及质量控制研讨会论文集[C];2011年
3 徐文岳;黄复生;张锡林;况明书;段建华;;大劣按蚊血淋巴酚氧化酶与约氏疟原虫卵囊黑化关系的研究[A];走向21世纪的中国昆虫学——中国昆虫学会2000年学术年会论文集[C];2000年
4 黄复生;时超美;段建华;况明书;;斯氏按蚊血细胞对约氏疟原虫卵囊黑化的影响[A];昆虫学创新与发展——中国昆虫学会2002年学术年会论文集[C];2002年
5 吴忆;冯辉;郑丽;刘军;马世红;曹雅明;;CD4~+CD25~+调节性T细胞在P.yoelii感染早期BALB/c和DBA/2小鼠的应答差异[A];中国免疫学会第五届全国代表大会暨学术会议论文摘要[C];2006年
6 陈继德;徐文岳;周桃莉;丁艳;黄复生;;TLRs激动剂抑制红外期疟原虫增殖及其机制研究[A];全国寄生虫学与热带医学学术研讨会论文集[C];2008年
7 张锡林;吕杨;何谐;段建华;;约氏疟原虫红外期发育、增殖相关蛋白及YIR蛋白的表位分析与原核表达研究[A];全国寄生虫学与热带医学学术研讨会论文集[C];2008年
8 卢义钦;刘俊凡;;入侵疟原虫与红细胞膜的相互作用[A];湖南省生理科学会2006年度学术年会论文摘要汇编[C];2007年
9 杨松;黄复生;况明书;徐文岳;段建华;;斯氏按蚊血淋巴差异表达蛋白的SDS-PAGE分析[A];昆虫学创新与发展——中国昆虫学会2002年学术年会论文集[C];2002年
10 张锡林;许颖;段建华;;约氏疟原虫子孢子侵入肝细胞相关基因及蛋白研究[A];全国寄生虫学与热带医学学术研讨会论文集[C];2006年
相关博士学位论文 前9条
1 杨松;斯氏按蚊差异表达蛋白与约氏疟原虫卵囊黑化关系及信号调控机制研究[D];第三军医大学;2004年
2 张健;TEP1在抗疟药—硝喹诱导按蚊黑化反应中机理的研究[D];第三军医大学;2008年
3 陈继德;TLRs激动剂对红外期疟原虫发育的影响与机制研究[D];第三军医大学;2009年
4 王东;鼠疟红内期动力素蛋白亚单位、核酸疫苗与细胞颗粒疫苗免疫效果的比较研究[D];中国协和医科大学;2002年
5 王英;大劣按蚊抗约氏疟原虫感染相关蛋白的研究[D];第三军医大学;2006年
6 钟翔;约氏疟原虫来源的巨噬细胞迁移抑制因子同源分子的功能研究[D];中国协和医科大学;2009年
7 邵丁丁;疟原虫表达的巨噬细胞迁移抑制因子同源分子的功能研究[D];中国协和医科大学;2006年
8 韩志富;恶性疟原虫动力素蛋白Pfdyn功能研究及感染恶性疟原虫红细胞膜蛋白质组检测数据分析[D];中国协和医科大学;2004年
9 郝宏兴;大劣按蚊成蚊cDNA文库的构建和前酚氧化酶部分基因克隆及疟原虫感染对其表达影响的研究[D];第三军医大学;2003年
相关硕士学位论文 前10条
1 吕杨;约氏疟原虫红外期发育、增殖相关蛋白及YIR蛋白表达与功能研究[D];第三军医大学;2007年
2 宋蓓;约氏疟原虫红外期相关基因及宿主抗疟原虫子孢子感染免疫分子研究[D];第三军医大学;2006年
3 王艳艳;影响约氏疟原虫在按蚊体内发育的因素及机制的初步研究[D];第三军医大学;2011年
4 郑伟;P. yoelii 17XL感染DBA/2小鼠保护性免疫机制的研究[D];中国医科大学;2004年
5 许颖;约氏疟原虫子孢子侵入肝细胞相关基因及蛋白研究[D];第三军医大学;2005年
6 陈继德;约氏疟原虫子孢子侵入相关基因分析及235kDa棒状体蛋白研究[D];第三军医大学;2006年
7 罗茗月;约氏疟原虫来源MIF同源分子对小鼠免疫系统功能调节的探索[D];北京协和医学院;2012年
8 马世红;抗疟治疗对约氏疟原虫感染小鼠获得性免疫影响的实验研究[D];中国医科大学;2006年
9 徐文岳;大劣按蚊黑化包被约氏疟原虫免疫机理的研究[D];第三军医大学;2001年
10 曾山;疟原虫源巨噬细胞迁移抑制因子的分泌途径及其对宿主细胞基因表达影响的初步研究[D];中国协和医科大学;2008年
,本文编号:2273612
本文链接:https://www.wllwen.com/yixuelunwen/binglixuelunwen/2273612.html