基于边缘检测算子的Huber正则化阈值选择方法在低剂量CT重建中的应用
发布时间:2018-04-27 18:02
本文选题:低剂量CT + 迭代重建 ; 参考:《南方医科大学学报》2015年03期
【摘要】:目的研究两种不同的Huber正则化阈值自适应选取方法及其在低剂量CT迭代重建中的应用。方法针对低剂量CT重建采用基于Huber正则化的迭代重建技术,Huber正则化阈值的选取分别基于全局和局部边缘保持算子。结果仿真数据的实验结果表明,两类Huber正则化阈值自适应选取方法均能较好地抑制重建图像中的噪声和伪影。结论两类Huber正则化阈值自适应选择方法均可实现低剂量CT优质重建。
[Abstract]:Objective to study two adaptive Huber regularization threshold selection methods and their applications in low dose CT iterative reconstruction. Methods for low-dose CT reconstruction, the iterative reconstruction technique based on Huber regularization was used to select the threshold of Huber regularization based on global and local edge preserving operators, respectively. Results the experimental results of simulation data show that both Huber regularization threshold adaptive selection methods can suppress the noise and artifact in the reconstructed image. Conclusion two kinds of Huber regularization threshold adaptive selection methods can achieve high quality reconstruction of low dose CT.
【作者单位】: 南方医科大学生物医学工程学院;
【基金】:国家自然科学基金(81101046,81371544) 国家973重点基础研究发展计划(2010CB732503) 国家科技支撑计划(2011BAI12B03)~~
【分类号】:R814.2
,
本文编号:1811744
本文链接:https://www.wllwen.com/yixuelunwen/fangshe/1811744.html