基于功能磁共振成像的脑网络研究
[Abstract]:The human brain, with 100 billion neurons and 100 billion synapses, is the most complex system known in the universe. Information reconciliation at multiple spatial and temporal scales is a prerequisite for brain function to support all cognition and behavior. Functional magnetic resonance imaging (f MRI), as a non-invasive in vivo brain functional imaging method, has a high spatial-temporal resolution and provides a powerful means for the study of large-scale human brain functional networks. The basic research on the neural network mechanism of head movement and the spatiotemporal dynamic characteristics of spontaneous nerve activity, as well as the methodologies and related applications of supervised and unsupervised mode analysis of brain state based on functional connectivity MRI (fc MRI). The work of this paper mainly includes the following four aspects Rong: Neural network mechanism of spontaneous head movement in brain imaging. Individual differences in brain indices, especially functional connectivity measured by F MRI, are correlated with head movement differences in data acquisition. The premise of this result is that the connection differences caused by head motion artifacts are corrected completely. In the second chapter of this paper, it is proposed that brain connection differences may also be possible. It is a neurobiological feature that predicts head movement differences. We support this argument by comparing the large head motion data and the small head motion data between individuals and individuals. Inter-individual analysis found the biological marker of head movement, i.e. the weakening of long-range functional connectivity in the default network of the large head motion subjects. In intra-individual analysis, this was not the case. Similar junctional differences were observed. On the contrary, this biomarker was very stable in individuals. These findings suggest that differences in brain junctions can not be simply considered as head-movement artifacts, but may also reflect individual differences in functional tissues. The third chapter demonstrates the feasibility of supervised pattern analysis based on whole brain resting FC MRI in differentiating patients with severe depression. The results demonstrate the supervised classification based on whole brain resting FC MRI. The most discriminatory functional connections were found in the default network, the emotional network, the visual cortex and the cerebellum, indicating that these resting networks associated with disease may be responsible for the emotional and cognitive development of patients with major depression. In addition, the amygdala, anterior cingulate cortex, parahippocampal gyrus and hippocampus may play important roles in the pathology of depression. These results suggest that resting FC MRI may be a potential biological marker for the diagnosis of depression. The diagnosis of depression is based on the patient's self-reported symptoms and clinical manifestations, so it may be influenced by the patient's current behavior and doctor's prejudice. In chapter 4, we propose an unsupervised brain network pattern classification framework based on resting FC MRI, which uses unsupervised clustering of FC MRI data without using the label information of diagnostic categories. We defined two sub-regions in the knee cingulate cortex: the subgenu and the anterior genu. Based on the functional connectivity map of the subgenu, the maximum interval clustering algorithm can distinguish the depressive patients from the healthy subjects. Both the group level clustering accuracy and the individual level classification accuracy are achieved. 92.5%. In addition, the most differentiated subgenicular cingulate functional connectivity networks include the ventrolateral and ventromedial prefrontal lobes, superior temporal gyrus, and marginal regions, which may play an important role in the pathology of depression. This study suggests that the subgenicular cingulate functional connectivity network characteristics can provide ideal and objective information for the diagnosis of major depression. Biological markers also indicate the potential of unsupervised machine learning based on maximum-interval clustering in clinical practice and in assistant psychiatric research. Spatiotemporal dynamics of spontaneous neural activity in the human brain. In the fifth chapter, the instantaneous synthesis and decomposition of brain states are obtained by clustering the co-activity patterns of a single BOLD (blood oxygenation level dependence) and the time phase of F MRI, showing that brain activities compete with each other in the time domain. These patterns are different from the classical functional networks and can dynamically follow distinct organizational and functional boundaries within the brain area in time domain. When performing semantic classification tasks, the temporal organization of these spatial patterns is similar. Task-related states can be observed in resting state, but selectively appear in task state. In short, these results indicate that human brain activities in resting state are dynamically fixed in the temporal domain. Transient states may better reveal ongoing cognitive processing, provide an indicator of behavioral change, and serve as a guide to behavioral change by increasing awareness of the brain's fixed functional repertoire attributes (including determining their potential electrophysiological correlations). Potential biomarkers of disease.
【学位授予单位】:国防科学技术大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R445.2;R338
【共引文献】
相关期刊论文 前10条
1 张宝林;张辉阳;;超顺磁性氧化铁纳米粒子在脑磁共振成像中的应用[J];磁共振成像;2011年05期
2 王超;杜剑平;闫镔;王大会;史大鹏;;SPM软件包头动校正原理的分析与评价[J];中国组织工程研究与临床康复;2010年52期
3 王浩;郭冰冰;陈丽峰;侯文生;阴正勤;;视觉正常人简单图形视觉刺激的视皮层功能定位及定量研究[J];眼科新进展;2010年01期
4 邱文娟;李建新;闫镔;杜剑平;史大鹏;;基于SPM5的视觉刺激3T功能磁共振成像数据处理研究[J];信息工程大学学报;2010年03期
5 许守林;郭万华;张剑戈;贾鹏;李爱梅;;PET标准脑图谱在阿尔茨海默病早期诊断中的应用[J];中国医疗设备;2009年10期
6 支联合;谭素敏;杜远东;;磁共振成像技术的物理学原理[J];周口师范学院学报;2008年02期
7 张艳;陈春晓;张志强;卢光明;;基于代价函数掩模法的局部脑损伤fMRI数据处理[J];中国生物医学工程学报;2008年06期
8 郝冬梅;李莹;李明爱;;基于功能磁共振成像的大脑运动皮层网络连通性研究[J];中国生物医学工程学报;2009年03期
9 支联合;王华东;张洁;;统计参数图和多尺度特征提取用于事件相关fMRI分析的比较[J];中国生物医学工程学报;2011年01期
10 支联合;谭素敏;杨建国;;基于混频去除和矩阵算法的多尺度特征提取方法分析fMRI数据[J];中国生物医学工程学报;2012年03期
相关博士学位论文 前10条
1 朱雪玲;首发未服药青年重性抑郁症脑网络连接的磁共振成像研究[D];中南大学;2011年
2 翁晓光;静息态脑功能磁共振数据分析方法及在弱视神经机制中的应用研究[D];南京航空航天大学;2010年
3 柯铭;基于功能磁共振成像的脑功能网络模式研究与应用[D];兰州理工大学;2009年
4 罗英姿;冗思在青少年抑郁发展中的作用及其神经机制[D];中南大学;2009年
5 李贞晶;基于脑功能区fMRI分析的针刺效应研究[D];黑龙江中医药大学;2012年
6 孙金燕;利用脑电及光电联合检测分别研究注意中的定向和执行控制[D];华中科技大学;2013年
7 陈俊琦;针刺缺血性脑卒中病人外关穴fMRI脑功能成像研究[D];南方医科大学;2013年
8 李永欣;珠心算训练对儿童大脑可塑性的影响以及大脑结构随训练时间的变化[D];浙江大学;2013年
9 孙金燕;利用脑电及光电联合检测分别研究注意中的定向和执行控制[D];华中科技大学;2013年
10 李宝娟;基于功能磁共振成像的脑连接分析[D];国防科学技术大学;2012年
相关硕士学位论文 前10条
1 符静嫣;不同基底下EEG、MEG正问题数值解比较[D];上海师范大学;2011年
2 张浩;基于fMRI与EEG对癫痫病的基础研究[D];南京航空航天大学;2010年
3 邱文娟;脑功能磁共振成像数据的相关性研究[D];解放军信息工程大学;2011年
4 韩耀启;磁共振DWI与DTI在脑梗死中的应用研究[D];泰山医学院;2009年
5 张艳;基于DCM的脑功能有效连接及在癫痫病中的应用[D];南京航空航天大学;2009年
6 王浩;视觉正常人图形刺激的视皮层功能核磁共振定位和定量研究[D];第三军医大学;2010年
7 王前锋;小动物高分辨扩散成像方法研究[D];华东师范大学;2012年
8 袁福来;灼口综合征患者心理健康状况及脑功能影像学研究[D];中南大学;2012年
9 陈亮;大学生抑郁情绪的脑内信息模式研究[D];大连海事大学;2013年
10 王骁冠;功能磁共振成像嗅觉刺激器的设计与验证[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
,本文编号:2178885
本文链接:https://www.wllwen.com/yixuelunwen/fangshe/2178885.html