基于曲面形态学的轻度认知障碍脑结构特性研究
[Abstract]:The brain is the most important and complex organ in human beings. It is of profound significance to study the structural characteristics and working mechanism of the brain to protect the health of the brain and better develop the potential of the brain. Mild cognitive impairment (MCI) is considered to be a transitional form between normal elderly (NC) and Alzheimer's disease (AD) with cognitive impairment. Because AD is irreversible, it is important to study the mechanism of brain structure changes in MCI to reduce the incidence and mortality of AD.
Surface-based morphology is a new method of brain morphology in recent years. It has been proved by more and more studies that it has a unique accuracy and sensitivity in the measurement of cerebral cortex (especially in the sulcus area). Therefore, this paper combines magnetic resonance image data and surface-based morphology to study MCI in many aspects, hoping to deepen the understanding of the pathogenesis of MCI and its impact on brain structure, and better realize the early prevention and treatment of Alzheimer's disease. The contributions are as follows:
1. In view of the fact that there are not many longitudinal tracking studies on brain structural abnormalities in MCI population at present, the longitudinal tracking analysis of brain atrophy patterns in MCI population is first proposed by using surface-based brain morphology. After digitizing the structural magnetic resonance images of MCI and NC population, the curved surface of cerebral cortex is obtained. Then we compared the cortical thickness of the MCI and NC populations over a two-year period, analyzed the difference in the rate of cortical thickness atrophy and the correlation between the thickness atrophy and the score of the Simple Intelligent State Examination (MMSE). The results showed that there were significant thinning abnormalities in MCI population relative to NC in some brain areas such as temporal lobe, insula and parahippocampal gyrus. The average thickness of these abnormal brain areas showed a significant linear downward trend with time and the rate was higher than that of NC population, and the correlation results showed that these abnormal brain areas were thinner than NC population. Atrophy is directly related to the decline of clinical manifestations.
2. Since there is no research on using cortical thickness to construct MCI brain network, we constructed MCI and NC brain network using the average thickness of the brain area for the first time, and found significant differences in small-world attributes between the two groups. Then we constructed the structured brain network based on the partial correlation coefficient matrix of brain interval thickness. We compared the differences between the two groups in average clustering coefficient, average shortest path length, hub node concentration and the correlation of brain interval connectivity using permutation test and Fisher Z transform. The clustering coefficients and shortest path lengths were larger in all sparsities, and the differences were significant in some sparsities. At the same time, there were also cases of increasing and missing hub nodes and increasing and decreasing brain region connectivity in MCI brain networks. The results of data or gray matter volume building MCI brain networks are more consistent, further demonstrating that MCI does, to some extent, alter the mechanism by which the brain processes information.
3. In order to combine the study of brain morphology with the prediction of early clinical diseases, and to test the reliability and accuracy of cortical thickness, we propose a feature selection method based on cortical thickness, which is applied to the classification of transformed mild cognitive impairment (CMCI) and stable mild cognitive impairment (SMCI). Firstly, the statistical analysis method was used to verify the significant difference of thickness between NC, CMCI and SMCI groups at baseline time. Thickness trend was NCSMCICMCI, which provided a basis for pattern classification using thicknesses data. Then the average thicknesses of 78 brain regions were calculated and compared between the two groups. For feature vectors of pattern classification, we compare the effects of two feature selection methods on classification results. One is based on the significance of the difference in brain area thickness, the other is based on the feature ranking coefficient obtained by the joint recursive feature removal (RFE) algorithm. Radial Basis Function (RBF) was selected as the kernel function of Support Vector Machine (SVM) and the grid parameters were optimized. The classification results showed that it was feasible to predict the transformation of mild cognitive impairment by using the average brain area thickness. The classification accuracy was up to 76.77% under the left-one cross validation.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R445.2;R749.1
【共引文献】
相关期刊论文 前10条
1 庄振华;王年;李学俊;梁栋;王继;;癌症基因表达数据的熵度量分类方法[J];安徽大学学报(自然科学版);2010年02期
2 陈乐;王年;苏亮亮;王蕊平;;基于邻接谱主分量分析的肿瘤分类方法[J];安徽大学学报(自然科学版);2011年04期
3 叶爱霞;王年;苏亮亮;;基于非负矩阵分解和Normal_Matrix的肿瘤基因分类[J];安徽大学学报(自然科学版);2012年03期
4 许高程;张文君;王卫红;;支持向量机技术在遥感影像滑坡体提取中的应用[J];安徽农业科学;2009年06期
5 管翠萍;;药物靶标G蛋白偶联受体的识别预测[J];安徽农业科学;2010年24期
6 刘婷婷;;基于支持向量机的水稻纹枯病识别研究[J];安徽农业科学;2011年28期
7 高闯;王立东;周世宇;;基于支持矢量机的宫颈细胞分类[J];辽宁科技大学学报;2009年03期
8 张顺花;王震寰;张俊祥;沈龙山;张磊;张艳;刘志军;;大脑中央前沟MRI解剖学研究及其临床意义[J];蚌埠医学院学报;2010年04期
9 汪廷华;田盛丰;黄厚宽;廖年冬;;样本属性重要度的支持向量机方法[J];北京交通大学学报;2007年05期
10 牟少敏;田盛丰;尹传环;;基于协同聚类的多核学习[J];北京交通大学学报;2008年02期
相关会议论文 前10条
1 ;An effective procedure exploiting unlabeled data to build monitoring system[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下)[C];2012年
2 ;A Novel Kernel PCA Support Vector Machine Algorithm with Feature Transition Function[A];第二十六届中国控制会议论文集[C];2007年
3 吕蓬;柳亦兵;马强;魏于凡;;支持向量机在齿轮智能故障诊断中的应用研究[A];第二十六届中国控制会议论文集[C];2007年
4 ;Fault Pattern Recognition of Rolling Bearings Based on Wavelet Packet and Support Vector Machine[A];第二十七届中国控制会议论文集[C];2008年
5 蒋少华;桂卫华;阳春华;唐朝晖;蒋朝辉;;基于主元分析与支持向量机的方法及其在密闭鼓风炉过程监控诊断中的应用[A];第二十七届中国控制会议论文集[C];2008年
6 王海丰;李壮;任洪娥;赵鹏;;基于非下采样Contourlet变换和SVM的纹理图像分割算法[A];第二十九届中国控制会议论文集[C];2010年
7 ;Image Classification with Ant Colony Based Support Vector Machine[A];中国自动化学会控制理论专业委员会A卷[C];2011年
8 ;A Mixed-Kernel-Based SVR Controller for Biped Robots[A];中国自动化学会控制理论专业委员会C卷[C];2011年
9 杨宏军;宋亦旭;梁伟;贾培发;;基于GLS-PSO的机器人砂带磨削轨迹优化[A];中国自动化学会控制理论专业委员会D卷[C];2011年
10 晋朝勃;胡刚强;史广智;李玉阳;;一种采用支持向量机的水中目标识别方法[A];中国声学学会水声学分会2011年全国水声学学术会议论文集[C];2011年
相关博士学位论文 前10条
1 赵莹;半监督支持向量机学习算法研究[D];哈尔滨工程大学;2010年
2 于化龙;基于DNA微阵列数据的癌症分类技术研究[D];哈尔滨工程大学;2010年
3 殷志伟;基于统计学习理论的分类方法研究[D];哈尔滨工程大学;2009年
4 柏坚;非线性数学地质模型研究及在滇东南金矿成矿预测中的应用[D];中国地质大学(北京);2010年
5 姚志明;基于步态触觉信息的身份识别研究[D];中国科学技术大学;2010年
6 章鹏;多尺度特征检测:方法和应用研究[D];中国科学技术大学;2010年
7 陈志国;基于群体智能的机器视觉的关键技术研究[D];江南大学;2010年
8 吕宁;基于数据驱动的故障诊断模型及算法研究[D];哈尔滨理工大学;2009年
9 张目;高技术企业信用风险影响因素及评价方法研究[D];电子科技大学;2010年
10 宋国明;基于提升小波及SVM优化的模拟电路智能故障诊断方法研究[D];电子科技大学;2010年
相关硕士学位论文 前10条
1 朱杰;一种基于聚类的支持向量机反问题求解算法[D];河北大学;2007年
2 李金华;基于SVM的多类文本分类研究[D];山东科技大学;2010年
3 江达秀;基于HMAX模型的人脸表情识别研究[D];浙江理工大学;2010年
4 李朋勇;基于全矢高阶谱的故障诊断方法及其应用研究[D];郑州大学;2010年
5 刘松;基于OCSVM和主动学习的DDOS攻击分布式检测系统[D];郑州大学;2010年
6 方宇;小波支持向量机在交通流预测中的应用研究[D];大连理工大学;2010年
7 梁怀志;基于嵌入式的车型分类系统的设计与实现[D];大连理工大学;2010年
8 李海燕;互信息特征选择的研究及在代谢组学中的应用[D];大连理工大学;2010年
9 李林;基于可靠性的TBM刀盘轻量化设计[D];大连理工大学;2010年
10 严康;基于支持向量机的特征选择算法研究[D];大连理工大学;2010年
,本文编号:2239550
本文链接:https://www.wllwen.com/yixuelunwen/fangshe/2239550.html