张力带钢板重建骨盆后环稳定性的解剖学研究及有限元分析
本文选题:骨盆环 + 骨盆骨折 ; 参考:《山东大学》2016年博士论文
【摘要】:研究背景不稳定性骨盆骨折,尤其是开放性骨盆骨折,常合并周围血管、神经的损伤,临床上其致死率及致残率较高。研究发现,在整体骨盆环的稳定性方面,骨盆前环的作用占了40%,而骨盆后环则占了60%,因此对于不稳定性骨盆骨折的治疗,内固定重建骨盆后环的稳定性成为整体骨盆环的治疗中的关键操作。目前,骨盆后环的手术内固定方式很多,各种内固定方式各有优缺点和手术适应症。骨盆后环张力带钢板(Posterior Pelvic Ring Tension Band Plate, PPRTBP)固定技术治疗不稳定性骨盆骨折具有操作简单,手术创伤较小,手术操作安全,手术并发症相对较少等优点,其在骨盆骨折的临床治疗上的应用也越来越多。在临床操作及发表的相关文献中可发现,骨盆后环张力带钢板的置放位置及方向在实际操作中有较大差异,谭国庆已对骨盆后环张力带钢板的三种临床常见位置进行了生物力学研究,提示置放在髂后上棘附近的张力带钢板其对骶髂关节分离的固定效果较好,提出了整体骨盆环“箍桶”式结构理论,但关于骨盆后环张力带钢板具体的手术置放位置及方向未做进一步研究。有限元分析方法,是一种理论生物力学研究方法。骨盆有限元分析就是利用数学近似的方法对真实的骨盆结构进行模拟,利用有限元软件建造骨盆三维有限元模型,分析后研究模型的应力、应变及位移情况。有限元分析法已成为人体生物力学研究的重要方法。本研究旨在,利用整体骨盆环“箍桶”式理论,通过对整体骨盆环及骶髂关节、耻骨联合关节的尸体解剖形态学研究,确定骨盆环中心平面在后方髂骨上的位置,测量其与髂后上棘(posterior superior iliac spine, PSIS)的距离,同时确定骨盆环中心平面的方向;然后,在解剖学研究基础上,建立骨盆三维有限元分析模型,探讨骨盆后环张力带钢板各不同固定方式的固定效果,筛选出最佳的固定方式,为临床合理应用张力带钢板重建骨盆后环稳定性提供理论依据。第一部分 张力带钢板内固定治疗骨盆后环损伤的解剖形态学研究目的通过对骨盆实体标本的观察和测量,及利用Mimics、CAD逆向工程技术,寻找整体骨盆环的中心平面,确定骨盆环中心平面在后方髂嵴的位置;进一步测量后,确定骨盆环中心平面在后方髂嵴位置至髂后上棘的距离,并确定骨盆环中心平面的倾斜角度。为进一步研究提供解剖基础。方法选取防腐的成年人尸体骨盆标本及干性骨盆标本共12具,其中男性骨盆实体标本8具,女性骨盆标本4具,解剖处理后取得骨性骨盆标本,分离骶髂关节及耻骨联合关节,暴露两关节的关节面;选取健康成人骨盆CT平扫资料20例,其平扫厚度为1.0mm,像素512*512,备用。采用三种不同方法对骨盆进行测量:一、骨盆实体标本测量。把骶髂关节及耻骨联合关节拟合成规则几何形状后,分别测量其几何重心,连接两几何重心确定骨盆环中心平面的位置,观察其与髂后上棘的位置关系,并确定其在后方髂嵴上的位置,测量髂后上棘与此位置的表面距离;确定髂后上棘及髂前上棘(anterior superior iliac spine, ASIS)连线所在平面,测量骨盆环中心平面与此平面的夹角。二、AutoCAD2014下骨盆标本的测量。拍摄骨盆实体标本的髂骨内侧面观照片,导入AutoCAD软件后,利用其强大的测量功能,确定骶髂关节及耻骨联合关节的重心所在的骨盆环中心平面,并测量髂后上棘到此平面在后方髂嵴位置的距离;确定髂后上棘及髂前上棘连线,测量骨盆环中心平面与此连线夹角。三、Mimics 16.0下三维骨盆模型的测量。利用骨盆CT平扫图片重建骨盆三维模型,然后在三维模式下确定骨盆环中心所在平面,测量髂后上棘到此平面的表面距离,及此平面与髂后上棘及髂前上棘连线的夹角。所得数据采用统计学软件SPSS进行处理,结果以平均数±标准误表示。结果骨盆实体标本的测量:骨盆环中心所在平面在后方髂嵴的位置与髂后上棘的表面距离为26.13±1.53mmm,骨盆环中心所在平面相对于髂后上棘与髂前上棘间连线的夹角为54.00±0.78。。AutoCAD2014下骨盆标本的测量:骨盆环中心所在平面在后方髂嵴的位置与髂后上棘的表面距离为26.45±1.49mm,骨盆环中心所在平面相对于髂后上棘与髂前上棘间连线的夹角为54.75±0.94。。Mimics16.0下骨盆三维模型的测量:骨盆环中心所在平面在后方髂嵴的位置与髂后上棘的表面距离为25.62±0.95mmm,骨盆环中心所在平面相对于髂后上棘与髂前上棘间连线的夹角为55.46±0.51。。骨盆尸体标本与骨盆三维模型测量数据合并后结果:骨盆环中心所在平面在后方髂嵴的位置与髂后上棘的表面距离为25.87±0.80mm;骨盆环中心所在平面相对于髂后上棘与髂前上棘间连线的夹角为55.05±0.45。。结论通过对人体骨盆解剖形态的观察及测量,确定了整体骨盆环中心平面所在位置,髂后上棘处于其后下方。骨盆环中心平面在后方髂嵴位置与髂后上棘间表面距离为25.87±0.80mm;骨盆环中心所在平面相对于髂后上棘-髂前上棘连线所在平面向前向下倾斜55.05±0.45。,为进一步研究奠定基础。第二部分 骨盆三维有限元模型的建立及其有效性验证目的建立正常骨盆有限元分析模型,验证和分析其可靠性,为进一步有限元分析骨盆损伤模型和骨盆后环张力带钢板固定模型奠定基础。方法招募成年健康男性志愿者1名,经过CT扫描后,得到层厚为1.Omm的骨盆CT横断面图像,导入Mimics软件建立骶骨及两侧髋骨的三维模型,经Geomagic Studio软件优化处理后,导入有限元分析软件Abaqus中,经赋值、装配、网格化、处理接触等处理后,建立含有周围韧带结构的完整骨盆三维有限元模型。模拟人体站立位,在两侧的髋臼设置边界条件,骶骨终板上表面施加600N重力方向载荷,计算完整骨盆环的应力、应变及位移情况。结果骶骨终板上表面施加600N重力方向载荷后,骨盆有限元模型应力传导方向为从骶骨终板上表面经两侧的骶骨翼,通过骶髂关节后,经骨盆弓状线及坐骨大切迹处向前向下传导,最终传导至双侧髋臼顶;骶骨相对于髂骨有向下向前移位的趋势,而髂骨有旋转的趋势;整体骨盆环应变较小,主要集中在左右骶髂关节的两侧,骨盆前环耻骨联合处的应变几乎可以忽略不计。结论利用Mimics 16.0、Geomagic Studio 2013及Abaqus 6.14重建了正常骨盆的三维有限元分析模型;此骨盆模型可靠,能较客观地反映人体骨盆的解剖结构和力学特性,可用于骨盆相关的有限元分析,为骨盆生物力学研究提供了一种重要方法。第三部分 不同方式张力带钢板重建骨盆后环稳定性的三维有限元分析目的利用有限元分析的方法,比较多种张力带钢板固定方式治疗骶髂关节分离损伤的内固定疗效,以期筛选出骨盆后环张力带钢板最佳的固定方式,为临床合理应用骨盆后环张力带钢板提供生物力学依据。方法招募成年健康男性志愿者1名,男性,24岁,骨盆CT扫描得到层厚为1.Omm、像素为512*512的骨盆CT横断面图像,导入Mimics软件建立骶骨及两侧髋骨的三维模型,经Geomagic Studio软件优化处理后,导入大型有限元分析软件Abaqus中,经赋值、装配、网格化、处理接触等处理后,建立左骶髂关节分离的骨盆损伤有限元模型;利用SolidWorks软件,绘制不同长度的3.5mm螺钉及骨盆重建钢板,根据骨盆后方结构测量数据预弯重建钢板成不同形态;张力带钢板模型及螺钉模型导入Abaqus中,与骨盆损伤模型装配在一起,制作六种不同张力带钢板固定方式的骨盆内固定模型,分别记为:髂后向上(IPAS)模型、髂后向下(IPAI)模型、髂后水平(IPAH)模型、髂上水平(ISAH)模型、髂上向下(ISAI)模型及髂下向上(IIAS)模型。模拟人体站立位状态,固定两侧髋臼,骶骨终板上表面施加600N重力方向载荷,记录左骶髂关节线两侧骶骨及髂骨位移,比较各模型对骨盆后环稳定性的固定效果。所得数据采用独立变量t检验,进行模型间两两比较。结果在骶骨终板上表面施加600N的垂直载荷后,骨盆损伤模型的左骶髂关节线骶骨侧及髂骨侧位移分别为0.524677±0.009845mm.0.947979±0.096923mm,明显大于骨盆正常模型的0.070144±0.00284mm.0.550724±0.007925mm,两者间差异有明显统计学意义,p0.001。ISAI模型的左骶髂关节线骶骨侧位移为0.261031±0.006321mm,髂骨侧位移为0.380023±0.036695mm;ISAH模型的左骶髂关节线骶骨侧位移为0.292494±0.009099mm,髂骨侧位移为0.558186±0.038701mm;IPAS模型的左骶髂关节线骶骨侧位移为0.313834±0.009324mm,髂骨侧位移为0.483707±0.044013mm;IPAI模型的左骶髂关节线骶骨侧位移为0.257551±0.008835mm,髂骨侧位移为0.354244±0.040038mm;IPAH模型的左骶髂关节线骶骨侧位移为0.272655±0.009401mm,髂骨侧位移为0.362496±0.043095mm;IIAS模型的左骶髂关节线骶骨侧位移为0.295074±0.010359mm,髂骨侧位移为0.626016±0.045346mm。所有骨盆固定模型的位移均小于骨盆损伤模型,差异有统计学意义,p0.05;IPAI模型、IPAH模型及ISAI模型间比较,IPAI模型位移最小,但三者间差异无统计学意义;ISAI模型位移小于ISAH模型,差异有统计学意义;IPAI模型、IPAH模型位移均小于IPAS模型,差异有统计学意义;IPAS模型髂骨侧位移小于IIAS模型位移,差异有统计学意义。结论张力带钢板重建骨盆后环稳定性时要考虑整体骨盆环的形态结构,利用整体骨盆环“箍桶”式生物力学结构。经骨盆有限元分析,髂后向下模型、髂后水平模型及髂上向下模型的固定效果最好,优于其它三种张力带钢板固定方式;相同固定位置不同固定方向比较,与骨盆环中心平面平行方向固定效果最好;不同固定位置相同固定方向比较,髂后上棘位置最佳,但与髂后上棘上方约26.0mm位置固定差异无明显统计学意义,髂后上棘下方固定位置最差。结合前面的骨盆解剖学研究,认为骨盆后环张力带钢板的固定位置在髂后上棘及其上方26.0mm范围内最佳,固定方向平行于骨盆环中心平面最佳,较髂后上棘-髂前上棘间连线所在平面向前向下倾斜约55.0°。
[Abstract]:The study of unstable pelvic fractures, especially open pelvic fractures, often combined with peripheral vascular and nerve injuries, has a high clinical fatality rate and high disability rate. The study found that the role of the pelvic anterior ring is 40% and the posterior pelvic ring is 60% in the overall pelvic ring stability, and therefore the treatment of unstable pelvic fractures The stability of internal fixation and reconstruction of the posterior pelvic ring has become a key operation in the treatment of the whole pelvic ring. At present, there are many internal fixation methods for the posterior pelvic ring, and various internal fixation methods have advantages and disadvantages and surgical indications. The fixation technique of the posterior pelvic ring tension band (Posterior Pelvic Ring Tension Band Plate, PPRTBP) is used for the treatment of instability. Qualitative pelvic fractures have the advantages of simple operation, small surgical trauma, safe operation and relatively few complications, and more and more applications in the clinical treatment of pelvic fractures. The position and direction of the placement and direction of the posterior pelvic ring tension band plate can be found in the related literature. Tan Guoqing has made a biomechanical study of the three common clinical positions of the tension band plate of the pelvic posterior ring, suggesting that the tension band plate near the posterior upper iliac spine has a better fixation effect on the separation of the sacroiliac joint. The whole pelvic ring "hoop bucket" structure theory is put forward, but the tension band steel plate for the pelvic posterior ring is made. The finite element analysis method is a theoretical biomechanical research method. The finite element analysis of the pelvis is to simulate the real pelvis structure by using the approximate method of mathematics. The finite element software is used to build the three-dimensional finite element model of the pelvis, and the stress of the model is analyzed after the analysis. The finite element analysis has become an important method for the study of human biomechanics. This study aims to determine the position of the central plane of the pelvic ring on the posterior iliac bone by using the holistic pelvic ring "hoop" theory, and to determine the position of the central plane of the pelvic ring on the posterior bone of the iliac bone by the study of the whole pelvic ring and sacroiliac joint. The distance between the posterior superior iliac spine (PSIS) and the direction of the central plane of the pelvic ring is determined at the same time. Then, on the basis of the anatomical study, the three-dimensional finite element analysis model of the pelvis is established to explore the fixation effects of the different fixation methods of the tension band plate of the pelvic posterior ring, and to screen out the best way of fixation, which is reasonable for clinical practice. The application of tension band steel plate in the reconstruction of posterior pelvic ring stability provides a theoretical basis. The first part of the tension band plate internal fixation for the treatment of posterior pelvic ring injury anatomic study objective through the observation and measurement of pelvic solid specimens, and the use of Mimics, CAD reverse engineering technology to find the central plane of the whole pelvic ring, to determine the pelvic ring in the pelvic ring The position of the heart plane in the posterior iliac crest; after further measurement, the distance between the central plane of the pelvic crest and the posterior iliac spine is determined and the inclination angle of the central plane of the pelvic ring is determined. The anatomical basis for further study is provided. 12 specimens of the pelvic and dry pelvic specimens of the antiseptic adult cadavers, among them, are selected. 8 specimens of sexual pelvis, 4 pelvic specimens, bone pelvic specimens, sacroiliac joint and symphysis joint joint, two joint surfaces exposed, 20 cases of healthy adult pelvis CT scanning data were selected, the plain scan thickness was 1.0mm, pixel 512*512, reserve. The pelvis was measured by three different methods: 1 After the joint joint joint of the sacroiliac joint and the joint of the pubis joint was synthesized, the geometric center of gravity was measured and the position of the central plane of the pelvic ring was determined by the two geometric center of gravity, and the position relationship with the posterior upper iliac spine was observed, and the position on the posterior iliac crest was determined, and the surface of the posterior upper iliac spine and the surface of this position were measured. Distance; determine the plane of the upper spine of the posterior iliac and the superior iliac spine (anterior superior iliac spine, ASIS), and measure the angle between the central plane of the pelvic ring and the plane of the pelvis. Two, the measurement of the pelvis specimen under AutoCAD2014. Photograph the inner surface of the iliac bone in the specimen of the pelvis, and after guiding the AutoCAD software, using its powerful measuring function, determine the function of its powerful measurement. The center plane of the center of the center of the center of gravity of the sacroiliac joint and the symphysis pubis joint, and measuring the distance between the posterior iliac spine and the posterior iliac crest at this plane; determining the posterior superior iliac spine and the anterior superior iliac spine line, measuring the center plane of the pelvis and the angle of this connection. Three, the measurement of the three-dimensional pelvis model under the Mimics 16. The three-dimensional model of the pelvis was reconstructed, then the plane of the center of the pelvic ring was determined in the three-dimensional model, the surface distance of the posterior upper iliac spine to the plane was measured, and the angle between the plane and the posterior superior iliac spine and the anterior superior iliac spine. The data were processed by the statistical software SPSS, and the results were mistaken for an average number of standards. The position of the center of the pelvic crest located in the posterior iliac crest and the surface of the posterior iliac spine is 26.13 + 1.53mmm, and the angle of the center of the pelvic ring is relative to the angle between the posterior superior iliac superior spine and the anterior superior iliac spinous spine. The position of the pelvis at the center of the pelvic ring is located at the posterior iliac crest. The distance between the surface of the posterior superior iliac spine is 26.45 + 1.49mm, and the angle of the center of the pelvic ring is relative to the angle between the posterior superior iliac superior spine and the anterior superior iliac spine. The surface of the pelvic ring center is located at the posterior iliac crest and the surface distance between the posterior iliac spine and the upper iliac spine is 25.62 + 0.95mmm, and the pelvic ring is in the pelvic ring. The angle between the plane of the heart and the interspinal cord between the posterior superior iliac superior spine and the anterior superior iliac spine is 55.46 + 0.51.., and the result is that the surface of the center of the pelvic crest is 25.87 + 0.80mm at the posterior iliac crest and the surface of the posterior iliac spine, and the plane of the center of the pelvic ring is relative to the posterior iliac. The angle between the spine and the anterior superior iliac spine is 55.05 + 0.45... conclusion by observing and measuring the anatomy of the pelvis, the position of the central plane of the whole pelvic ring is determined and the posterior upper iliac spine is in the lower part. The center plane of the pelvic ring is 25.87 + 0.80mm between the posterior iliac crest and the posterior superior iliac spine, and the center of the pelvic ring is at the center of the pelvis. The plane is inclined to 55.05 + 0.45. in plane relative to the plane of the posterior superior iliac spine and the anterior iliac spine line, which lays the foundation for further study. The establishment of the second part of the three-dimensional finite element model of the pelvis and its effectiveness verification aim to establish the finite element analysis model of the normal pelvis, to verify and analyze its reliability, for further finite element analysis of bone. Methods 1 adult healthy male volunteers were recruited from the pelvis injury model and the posterior ring tension band plate model. After CT scanning, the CT cross-sectional image of the pelvic thickness of 1.Omm was obtained. Mimics software was introduced to establish the three-dimensional model of the sacrum and the two sides of the hip bone. After the optimization of the Geomagic Studio software, the finite element was introduced. In the software Abaqus, after assignment, assembly, grid and contact processing, a three-dimensional finite element model of a complete pelvis containing the surrounding ligament structure is established. The body standing position is simulated, the boundary conditions are set on the two sides of the acetabulum, and the 600N gravity load is applied on the surface of the sacral end plate to calculate the stress, strain and displacement of the complete pelvic ring. Results after the 600N gravity load was applied to the upper surface of the sacral endplate, the stress conduction of the pelvic finite element model was from the sacral wing on both sides of the sacral endplate, through the sacroiliac joint, through the pelvic arch and the large incisor at the large incisal incisor, eventually conducting to the double acetabular top; the sacral bone had a downward forward relative to the iliac bone. The trend of displacement, while the trend of iliac bone rotation, the overall pelvic ring strain is smaller, mainly concentrated on both sides of the sacroiliac joint, and the strain of the symphysis of the pelvis is almost negligible. Conclusion the three-dimensional finite element analysis model of the normal pelvis was reconstructed with Mimics 16, Geomagic Studio 2013 and Abaqus 6.14; The model is reliable and can objectively reflect the anatomical structure and mechanical properties of the human pelvis. It can be used for the finite element analysis of pelvis. It provides an important method for the study of pelvis biomechanics. Third three dimensional finite element analysis of the stability of the posterior pelvic ring for the reconstruction of the pelvic posterior ring with different ways of tension band steel plate is used in the finite element analysis method. To compare the internal fixation effects of multiple tension band plate fixation for sacroiliac joint injury, in order to screen out the best fixation method of the posterior pelvic ring tension band plate, and provide a biomechanical basis for the rational application of the posterior ring tension band plate in the pelvis. Methods 1 male healthy male volunteers, 24 years old and pelvic CT scan were recruited. The CT cross section image of the pelvis with a thickness of 1.Omm and a pixel of 512*512 was obtained, and Mimics software was introduced to establish the three-dimensional model of the sacrum and the two sides of the hip bone. After the optimization of the Geomagic Studio software, the large finite element analysis software Abaqus was introduced. After assignment, assembly, grid and contact treatment, the pelvis loss of the separation of the left sacroiliac joint was established. The finite element model was injured and the SolidWorks software was used to draw different lengths of 3.5mm screws and pelvis reconstructive plates to form different forms according to the measurement data of the posterior structure of the pelvis, and the tension band plate model and screw model were introduced into Abaqus, together with the pelvis damage model, to make six different tension band plates fixed. The model of pelvic internal fixation was recorded as the IPAS model, the posterior iliac downward (IPAI) model, the posterior iliac level (IPAH) model, the upper iliac level (ISAH) model, the upper and lower iliac (ISAI) model and the lower iliac (IIAS) model, simulating the standing position of the human body, fixing the sides of the acetabulum, and applying the 600N gravity load on the surface of the sacral end plate. The displacements of sacral and iliac bone on both sides of the left sacroiliac line were recorded and the stability of the posterior pelvic ring was compared with each model. The data obtained by independent variable t test and 22 comparison between the models were carried out. The results of the 600N vertical load on the surface of the sacral endplate were divided into the sacral side and iliac side displacements of the left sacroiliac line. The difference between the 0.524677 + 0.009845mm.0.947979 + 0.096923mm and the normal model of the pelvis was significantly greater than that of the normal model of the pelvis 0.070144 + 0.00284mm.0.550724 + 0.007925mm. The differences were statistically significant. The sacral lateral displacement of the left sacroiliac line in the p0.001.ISAI model was 0.261031 + 0.006321mm, the lateral displacement of the iliac bone was 0.380023 + 0.036695mm, and the left sacral of the ISAH model The lateral displacement of the sacrosacroid of the iliac joint was 0.292494 0.009099mm, and the lateral displacement of the iliac bone was 0.558186 + 0.038701mm; the lateral displacement of the sacrosacral side of the left sacroiliac line in the IPAS model was 0.313834 + 0.009324mm, and the lateral displacement of the iliac bone was 0.483707 + 0.044013mm; the lateral displacement of the sacral joint in the left sacroiliac joint of the IPAI model was 0.257551 + 0.008835mm, and the lateral displacement of the iliac bone was 0.354244. The lateral displacement of the sacrosacral side of the left sacroiliac line in the IPAH model was 0.272655 + 0.009401mm and the lateral displacement of the iliac bone was 0.362496 + 0.043095mm; the lateral displacement of the sacrosacroid side of the left sacroiliac line in the IIAS model was 0.295074 + 0.010359mm, and the displacement of the iliac side displacement was 0.626016 + 0.045346mm. in all the pelvic fixation models were less than the pelvic injury model. Different statistical significance, P0.05, IPAI model, IPAH model and ISAI model comparison, IPAI model displacement is the smallest, but there is no statistical difference between the three, ISAI model displacement less than ISAH model, the difference is statistically significant; IPAI model, IPAH model displacement is less than IPAS model, the difference is statistically significant; IPAS model iliac side displacement is small IIAS model displacement, the difference is statistically significant. Conclusion the tension band plate reconstruction of the pelvic posterior ring stability should consider the overall pelvic ring shape and structure, using the whole pelvic ring "hoop" biomechanical structure. Through the pelvic finite element analysis, the posterior downward model of iliac, the posterior iliac level model and the upper iliac downward model are best. In the other three kinds of tension band plate fixation methods, the same fixed position and different fixed directions, parallel to the central plane of the pelvic ring.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R687;R322.7
【相似文献】
相关期刊论文 前10条
1 刘现景;钢针张力带固定治疗肩锁关节完全性脱位[J];中原医刊;2003年01期
2 郑瑛,金碧霞;闭合张力带治疗新鲜Ⅲ度肩锁关节脱位的护理[J];现代中西医结合杂志;2005年22期
3 陈琦;张力带治疗肱骨上段骨折[J];现代医药卫生;2005年08期
4 陈宝;王卫明;;张力带固定治疗腓骨下端骨折[J];现代中西医结合杂志;2007年31期
5 李冬严;张春光;马郡;侯勇;孟高乐;李德欣;张震宇;;张力带治疗早期四肢大面积皮肤缺损[J];吉林医学;2007年17期
6 李红;余春莲;;张力带治疗尺骨鹰嘴骨折患者的护理及康复[J];中国现代药物应用;2009年03期
7 蒙赤明;;平行穿针与交叉穿针加张力带固定治疗儿童肱骨髁上骨折疗效比较[J];广西医学;2012年07期
8 崔永锋;朱宝华;王利明;管功奎;;张力带原理力学基础的探讨[J];中医正骨;2012年07期
9 陈晓明,张健,张劲松;张力带法治疗第五跖骨粗隆骨折32例分析[J];吉林医学;1998年01期
10 黄均雄;张力带的应用体会[J];广西中医学院学报;1999年03期
相关会议论文 前10条
1 崔永锋;朱宝华;管功奎;王利明;;张力带原理在骨折治疗中力学基础的探讨[A];浙江省医学会骨科学分会30年庆典暨2011年浙江省骨科学学术年会论文汇编[C];2011年
2 李驰;金广建;陈雷;杨胜武;;髂骨移植合并张力带固定治疗严重粉碎性尺骨鹰嘴骨折[A];浙江省医学会骨科学分会30年庆典暨2011年浙江省骨科学学术年会论文汇编[C];2011年
3 卓高豹;王健;张怀保;;张力带法固定甲板治疗甲床损伤[A];2012年浙江省手外科学暨显微外科学学术年会论文集[C];2012年
4 周翔;;后路张力带钢板与经皮骶髂关节螺钉固定治疗骨盆后环骨折脱位的比较研究[A];2013中国工程院科技论坛暨浙江省骨科学学术年会论文摘要集[C];2013年
5 王娟;朱卫星;茹国华;;外侧张力带配合中药薰洗治疗肱骨髁上骨折68例[A];第二届第二次中医护理学术交流会议论文汇编[C];2007年
6 卓高豹;王健;张怀保;;张力带法固定甲板治疗甲床损伤[A];中华医学会第10届全国显微外科学术会议暨世界首例断肢再植成功50周年庆典论文集[C];2013年
7 卓高豹;王健;张怀保;;张力带法固定甲板治疗甲床损伤[A];2012年浙江省骨科学术年会论文集[C];2012年
8 高山;马克;;克氏针钢丝半侧张力带术治疗外踝骨折[A];宁夏医学会骨科学分会第六届学术年会资料汇编[C];2011年
9 高山;马克;;克氏针钢丝半侧张力带术治疗外踝骨折[A];宁夏医学会骨科分会第七届学术年会论文汇编[C];2012年
10 周谋望;;张力带涤纶线内固定治疗髌骨骨折及术后康复[A];中国康复医学会第四届会员代表大会暨第三届中国康复医学学术大会论文汇编[C];2001年
相关博士学位论文 前2条
1 何吉亮;张力带钢板重建骨盆后环稳定性的解剖学研究及有限元分析[D];山东大学;2016年
2 谭国庆;张力带钢板重建骨盆后环稳定性的生物力学研究[D];山东大学;2012年
相关硕士学位论文 前2条
1 彭源祥;Cable pin系统与克式针张力带固定治疗髌骨骨折的Meta分析[D];南昌大学医学院;2015年
2 周翔;后路张力带钢板与经皮骶髂关节螺钉固定治疗骨盆后环骨折脱位的比较研究[D];浙江大学;2012年
,本文编号:2078890
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/2078890.html