肿瘤抑制因子PTEN的抗病毒功能及其机制研究
[Abstract]:Identifying pathogenic microorganisms is the first step in activating a natural immune response, which is achieved by identifying the pathogen-related molecular patterns (MAMPs) through a series of pattern recognition receptors (PRRs). For example, in most cells, RIG-I-like receptors (RIG-I)-like rectins, RLRs) recognize double-stranded RNA (dsRNA) or single-stranded RNA (ssRNA) generated by viral infections; in some immune cells, Toll-like receptors (TLRs) identify viral RNA and ssRNA that have been internalized into the endosomes. Once activated, the pattern recognition receptors cause downstream signal cascade reactions leading to a large number of type I interferon and pro-inflammatory factors. interferon regulatory factor 3 (iRF3) plays an indispensable role in the process of innate immune response. After cell recognition of a pathogen, IRF3 is phosphorylated on several phosphorylated receptor clusters, followed by conformational changes, homodimerizing, nucleus-entering, and binding to the promoter sequence interferon-stimulated response (IRE) of the target gene. The essential role of IR3 in the IFN-induced pathway determines that it must be finely regulated so as to allow the host to respond accurately to viral infections. The kinases TBK1 and IKK upstream of IRF3 have long been reported, but phosphatases responsible for the IRF3 dephosphorylation process are still unknown. Tumor suppressor gene PTEN is one of several tumor suppressor factors with the highest mutation rate. PTEN antagonizes the T-Akt signaling pathway through its lipid phosphatase activity, thereby controlling a series of cellular physiological processes, which play a central role in tumor suppression. Although the tumor suppressor function of PTEN is very thorough, the function of PTEN in anti-viral immunity has not been reported. In this study, we report the new function of PTEN in innate anti-virus innate immunity, and we have found that PTEN can promote the expression of viral-induced type I interferon and play a key role in anti-viral innate immune response. Our findings suggest that the role of PTEN in the type I interferon inducible pathway depends on its phosphatase activity, but does not depend on the p38-Akt pathway. IRF3 is a key transcription factor for the I-type interferon inducible pathway, while PTEN promotes the expression of viral-induced I-type interferon by promoting the migration of IRF3 into the nucleus. Experiments using a variety of viruses and nucleic acid analogs to induce interferon production demonstrate that PTEN is involved in all IRF3-mediated interferon reactions. Further studies have shown that, in addition to the known phosphorylation activation sites, IRF3 also has phosphorylation sites, which identify three phosphorylated negative regulatory sites, including Ser82, Ser97 and Ser339, where phosphorylation of Ser97 sites results in IRRF3 not entering the nucleus, PTEN confirmed the phosphorylation of Ser97 phosphorylation site by its phosphatase activity, thus promoting the expression of IRF3 in nuclear and I-type interferon. The virus infection experiment shows that the anti-virus interferon response of all kinds of cells (including tumor cells) deleted by PTEN is remarkably reduced, and the replication efficiency of the virus is increased, and the apoptosis of the host cell is increased. In this study, PTEN conditioned knock-out mouse experimental system was established. Compared with wild-type mice, there was a significant decrease in interferon response in PTEN-deficient mice, and it was highly susceptible to blister-inflammatory virus (VSV). Therefore, the physiological function of PTEN was confirmed in mouse model. In conclusion, we have found that PTEN plays a key role in anti-virus innate immunity in addition to anti-tumor function, and reveals the new mechanism of phosphorylation negative regulation of IRF3 and the dephosphorylation function of PTEN phosphatase to the negative regulatory site of IR3. These work demonstrate the interaction between PTEN and IRF3 between tumor suppression and anti-viral innate immunity, and partly explain why tumor cells are generally more sensitive to viral infections, thus providing new knowledge for the development of new antiviral strategies, It has important clinical significance for screening and applying soluble tumor virus in the treatment of PTEN-deficient cancer.
【学位授予单位】:武汉大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R392
【相似文献】
相关期刊论文 前10条
1 舒红兵;;抗病毒天然免疫信号转导关键接头蛋白的发现[J];科学观察;2009年05期
2 ;过氧化物酶体是抗病毒天然免疫的信号转导平台[J];微生物与感染;2011年01期
3 孙辉;蒋争凡;;抗病毒天然免疫研究[J];中国科学:生命科学;2013年10期
4 孙莉;刘殿波;杨宇东;邢雅玲;陈晓娟;陈忠斌;;人类冠状病毒调节宿主抗病毒天然免疫分子机制[J];生物化学与生物物理进展;2010年03期
5 周荣佼;王金燕;王凤;;抗病毒天然免疫识别受体的研究进展[J];中外医疗;2010年34期
6 王平忠;白雪帆;黄长形;王九平;贾战生;姜泓;;Toll样受体介导的抗病毒天然免疫[J];细胞与分子免疫学杂志;2008年05期
7 刘殿波;钱远宇;张七斤;陈忠斌;;抗病毒天然免疫通路中IRF-3调控新机制[J];中国生物化学与分子生物学报;2009年12期
8 刘殿波;孙莉;张百灵;闫飞;陈忠斌;;抗病毒天然免疫反应中RIG-Ⅰ样受体调控机制新进展[J];军事医学科学院院刊;2010年01期
9 秦成峰;秦鄂德;;RIG-I样受体与RNA病毒识别[J];微生物学报;2008年10期
10 何小兵;房永祥;贾怀杰;陈国华;曾爽;景志忠;程国锋;;Toll样受体7介导的抗病毒天然免疫反应研究进展[J];中国兽医科学;2010年06期
相关会议论文 前2条
1 李国勤;卢立志;;动物模式识别受体介导的抗病毒天然免疫作用[A];全国动物生理生化第十一次学术交流会论文摘要汇编[C];2010年
2 蒋争凡;;ERIS-TBK1通路在抗病毒天然免疫中作用的研究[A];免疫细胞生物学热点研究进展——海峡两岸免疫细胞生物学研讨会论文摘要集[C];2013年
相关重要报纸文章 前5条
1 王怀民邋鲁伟;武汉大学在细胞抗病毒天然免疫领域取得重要进展[N];科技日报;2008年
2 记者 蒋明 通讯员 王怀民 鲁伟;细胞抗病毒天然免疫研究有新成果[N];健康报;2008年
3 记者蒋明 通讯员王怀民;细胞抗病毒天然免疫研究获进展[N];健康报;2009年
4 王怀民 记者 赵凤华;我科学家填补病毒核酸信号传导研究一项空白[N];科技日报;2009年
5 整理 蒋明 杨雪;做免疫反应分子机制的探路者[N];健康报;2011年
相关博士学位论文 前10条
1 郑青亮;MicroRNA-27a调控抗病毒天然免疫应答及其机制研究[D];浙江大学;2014年
2 刘朝山;G3BP1通过cGAS调控抗病毒天然免疫的作用机制研究[D];中国人民解放军军事医学科学院;2016年
3 朱明珠;干扰素反应调控因子IRF3的入核机制研究[D];武汉大学;2015年
4 王文蝶;RNF122负向调控抗病毒天然免疫反应及作用机制研究[D];北京协和医学院;2016年
5 陈罗泉;MicroRNA-223、白介素27对巨噬细胞抗病毒天然免疫应答调控机制的研究[D];浙江大学;2016年
6 俞宙;SCF复合体SCF~(FBXO21)在抗病毒天然免疫中的功能及其机制研究[D];浙江大学;2015年
7 李顺;肿瘤抑制因子PTEN的抗病毒功能及其机制研究[D];武汉大学;2015年
8 李颖;细胞抗病毒天然免疫信号转导的调控机制[D];武汉大学;2011年
9 徐铮;调控抗病毒天然免疫的miRNA筛选及其作用机制研究[D];华中农业大学;2012年
10 燕杰;E3泛素连接酶TRIM4和TRIM21调节细胞抗病毒天然免疫信号转导的机制[D];武汉大学;2012年
相关硕士学位论文 前1条
1 孙莉;人类新发NL63冠状病毒木瓜样蛋白酶调控宿主抗病毒天然免疫反应及其分子机制[D];中国人民解放军军事医学科学院;2010年
,本文编号:2290117
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/2290117.html