基于模式分解的脑功能网络的构建及分类研究
发布时间:2020-05-14 23:23
【摘要】:网络连接为理解大脑的复杂功能系统提供了重要的研究手段。如何准确地构造脑功能网络并刻画其潜在的网络结构已成为神经科学领域的核心问题之一。功能磁共振成像(functional magnetic resonance imaging,fMRI)等无创的神经成像技术为研究大脑功能提供了有效的手段。然而,由于神经成像数据通常具有较高的时空复杂性以及较低的信噪比,针对脑功能网络的研究仍极具挑战性。因此,为脑功能网络的构建和分析提出有效的新方法具有十分重要的意义。数据驱动的方法为脑功能网络的研究开辟了全新的领域,本文引入基于数据驱动的多种模式分解(pattern decomposition)技术,以静息态fMRI数据为载体,进行脑功能网络的研究。具体地说,基于模式分解技术,本文提出了构建脑功能网络和进行网络结构分析的新方法,并对脑功能网络的社团结构进行了从非重叠到重叠、从个体水平到跨被试水平的研究。此外,还将这些方法应用于疾病人群的脑功能网络及其社团结构的研究中。本文主要进行了以下四方面的研究:1.针对脑功能网络的构造,提出了基于稀疏表示和聚类的功能连接计算与分析方法。本文将自适应稀疏表示(adaptive sparse representation,ASR)这种模式分解技术应用于功能连接的计算,更准确地构造脑功能网络,并应用近邻传播(affinity propagation,AP)聚类算法检测脑功能网络的非重叠社团结构。基于模拟fMRI数据的实验结果表明,ASR方法计算功能连接的敏感度高达90.6%,且基于ASR与AP算法的社团结构检测准确率达到74.8%,优于其他对比算法。基于真实fMRI数据的实验结果表明,利用ASR方法构造的脑功能网络具有更高的重测可靠性和模块性,并且其社团结构具有较高的聚类质量和较强的可解释性,进一步体现了ASR方法在刻画脑功能网络结构上的有效性和合理性。2.针对脑功能网络的社团检测,提出了基于非负矩阵分解的重叠社团结构检测方法。本文基于对称非负矩阵分解(symmetric non-negative matrix factoriztion,symNMF)这一模式分解技术,通过增加?_1范数正则项形式的稀疏约束提出了稀疏对称非负矩阵分解(sparse symmetric non-negative matrix factorization,ssNMF)方法,用于检测脑功能网络中的重叠社团结构。同时,通过对ASR算法增加非负约束提出了非负自适应稀疏表示法(non-negative adaptive sparse representation,NASR),进一步明确所计算的功能连接的物理意义。模拟实验结果表明,对于具有重叠或非重叠社团结构的脑功能网络,ssNMF方法均能够更准确地检测其社团结构,且所得的社团结构具有更高的稳定性。基于真实fMRI数据的实验结果表明,ssNMF检测的重叠社团具有较高的可重复性和良好的神经生理学意义,且与之前研究发现的静息态子网络具有较好的一致性,进一步体现了ssNMF方法在重叠社团结构检测上的有效性和合理性。3.针对跨被试水平重叠社团结构的检测,提出了基于聚集方式的检测方法。本文提出了聚集稀疏对称非负矩阵分解方法(collective sparse symmetric NMF,cssNMF),在检测所有被试共同拥有的组水平重叠社团结构的同时,将被试间个体差异以社团强度的形式加以保留。模拟实验结果表明,cssNMF在组水平重叠社团结构的检测上达到了94.4%的准确率,远优于其它对比算法。同时,cssNMF刻画的社团强度与真实标准相比能达到90.0%以上的相似度,表明cssNMF能够有效地保留个体差异。基于真实fMRI数据的实验结果表明,cssNMF所检测的社团结构具有较高的跨时段、跨被试及跨数据集稳定性,并且具有良好的神经生理学意义。其检测的重叠节点主要位于额叶、顶叶及额顶网络中,与之前研究具有较好的一致性。另外,cssNMF在个体水平检测的社团强度具有良好的重测可靠性。这些结果证明了cssNMF方法在重叠社团检测上的有效性和在个体识别上的潜在应用价值。4.为阿尔兹海默症(Alzheimer’s disease,AD)脑功能网络社团结构的研究提供了新的研究框架,并构建了个体水平的AD检测模型。本文基于NASR构造脑功能网络,结合cssNMF与凝聚层次聚类(agglomerative hierarchical clustering),在组水平上研究了AD病人与健康被试在不同尺度的重叠社团结构与社团层级结构上的差异。同时,基于cssNMF获得的社团强度在个体水平上构建了AD检测模型。组水平的比较发现,AD病人不同尺度的重叠社团结构与社团层级结构存在明显改变,且其重叠社团结构在精细尺度下的稳定性、脑功能网络功能分化能力与节点的功能多样性均明显下降。此外,基底神经节-丘脑及默认模式网络这两个社团的社团强度与认知能力存在显著的正相关关系。而在个体水平上,基于社团强度构造的AD检测模型能够对AD病人进行有效识别。通过使用最近邻分类器并将低维的社团强度作为分类特征,该AD检测模型的分类准确率、敏感度和特异度分别可达到64.7%、70.0%和60.0%,且其分类准确率具有显著的统计学意义(p0.05)。这些实验结果为AD生物学标记的确立提供了补充依据。
【图文】:
反映部分节点间的功能连接模式,因此其适用性比较有限。而基于所有节点的神经成像信号构造的全脑功能网络,则可以全面地反映所有节点之间的相互作用。结合图论与数据驱动等方法进行全脑功能网络研究的经典框架如图1.1所示。以 fMRI 信号为例,首先,根据解剖学模板或使用数据驱动等方式,在大脑皮层上定义一定数量的感兴趣区域作为脑网络的节点,并提取节点的 fMRI 时间序列。其次,计算节点之间的功能连接作为脑网络的边,从而完成脑功能网络的构建。这种脑功能连接网络常用关联矩阵(associationmatrix)表示,其中每一个元素代表两个节点之间的功能连接值。然后,使用图论及数据驱动等方法分析脑功能网络的拓扑属性。最后,基于功能连接及脑网络拓扑属性等特征
1.7 本文的主要工作本文基于 fMRI 数据和模式分解技术,围绕脑功能网络主要进行了以下四个方面的研究,如图1.2所示:1. 研究一,针对脑功能网络的构造,提出基于 ASR 的功能连接计算方法。在脑功能网络的构造中,相关法作为常用的功能连接计算方法,通常仅关注两两节点间的关联而不考虑其余节点的影响,且其构造的脑网络较稠密并常包含负值。在第二章中,,本文提出了应用 ASR 计算功能连接的新方法,并将 ASR 与皮尔逊相关法和偏相关系数法进行对比。在方法验证中,分别基于模拟 fMRI 数据和真实的静息态 fMRI 数据构造脑功能网络,并使用多种指标对各功能连接计算方法进行对比。另外,应用近邻传播(affinitypropagation,AP)聚类算法检测脑功能网络的非重叠社团结构
【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:O157.5;R338
【图文】:
反映部分节点间的功能连接模式,因此其适用性比较有限。而基于所有节点的神经成像信号构造的全脑功能网络,则可以全面地反映所有节点之间的相互作用。结合图论与数据驱动等方法进行全脑功能网络研究的经典框架如图1.1所示。以 fMRI 信号为例,首先,根据解剖学模板或使用数据驱动等方式,在大脑皮层上定义一定数量的感兴趣区域作为脑网络的节点,并提取节点的 fMRI 时间序列。其次,计算节点之间的功能连接作为脑网络的边,从而完成脑功能网络的构建。这种脑功能连接网络常用关联矩阵(associationmatrix)表示,其中每一个元素代表两个节点之间的功能连接值。然后,使用图论及数据驱动等方法分析脑功能网络的拓扑属性。最后,基于功能连接及脑网络拓扑属性等特征
1.7 本文的主要工作本文基于 fMRI 数据和模式分解技术,围绕脑功能网络主要进行了以下四个方面的研究,如图1.2所示:1. 研究一,针对脑功能网络的构造,提出基于 ASR 的功能连接计算方法。在脑功能网络的构造中,相关法作为常用的功能连接计算方法,通常仅关注两两节点间的关联而不考虑其余节点的影响,且其构造的脑网络较稠密并常包含负值。在第二章中,,本文提出了应用 ASR 计算功能连接的新方法,并将 ASR 与皮尔逊相关法和偏相关系数法进行对比。在方法验证中,分别基于模拟 fMRI 数据和真实的静息态 fMRI 数据构造脑功能网络,并使用多种指标对各功能连接计算方法进行对比。另外,应用近邻传播(affinitypropagation,AP)聚类算法检测脑功能网络的非重叠社团结构
【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:O157.5;R338
【相似文献】
相关期刊论文 前10条
1 董朝菊;;多吃莓类水果有助于提高大脑功能[J];中国果业信息;2010年11期
2 范基公;用脑类型测试·脑功能测量·脑功能开发[J];北京教育;1996年11期
3 何益龙;脑功能的开发与音乐的选择[J];北京教育;1997年05期
4 卢紫欣;谢飞;吕宝北;赵鹏翔;商蕾;马雪梅;;失重或模拟失重对大脑功能的影响研究进展[J];生物技术进展;2017年03期
5 金鑫;阴育红;;脑功能(障碍)治疗仪对脑梗死后失眠的临床效果的探讨[J];中外医疗;2015年01期
6 杨蕾;;运动对儿童脑功能发育的影响研究综述[J];休闲;2019年06期
7 环科;;梦是大脑功能的副产品[J];科学大观园;2017年18期
8 李皖生;;足量饮水带给你的10个变化[J];科学养生;2017年09期
9 强U
本文编号:2664095
本文链接:https://www.wllwen.com/yixuelunwen/jichuyixue/2664095.html