帕瑞昔布钠对脓毒症肠屏障功能的保护效应及机制研究
[Abstract]:Objective sepsis is a systemic inflammatory response to infection, which is still one of the main causes of death in the intensive care unit (ICU). [1-3]. intestinal mucosal barrier dysfunction and increased permeability often accompany the occurrence and development of sepsis. Bacterial translocation caused by impaired intestinal mucosal barrier function becomes secondary purulent. The important cause of toxic disease, and the decrease of blood supply in intestinal tissue caused by sepsis and inflammatory factor storm can further aggravate the injury of intestinal mucosa, and gradually form a vicious cycle. Evaluation of the function of intestinal barrier is an important link in judging the prognosis of critically ill patients. Intestinal damage is an important factor to start MODS. Therefore, how to protect the intestinal tract is how to protect it The normal function of the intestinal barrier has become an important research direction in the current critical medical field [4,5]. parinoxib sodium (NSAIDs) is a COX-2 specific inhibitor, which is a non steroidal anti-inflammatory drug, which can be injected via intravenous or intramuscular injection. After the use of carboxylesterase from liver, it plays a role in the main mechanism of action. The inhibition of prostaglandins (PG) by blocking the prostaglandin (COX-2) and reducing the prostaglandin (PG) level by COX-2 shows that high level prostaglandins can cause damage to the intestinal barrier function, and the cyclooxygenase -2 inhibitor reduces the prostaglandin synthesis by inhibiting the expression of COX-2, and may be associated with the intestinal barrier dysfunction caused by sepsis. The role of parexoxib sodium (parexoxib), an inhibitor of cyclooxygenase -2, on the intestinal barrier function of rats with sepsis and the mechanism of protective effect of parexib sodium on intestinal mucosal barrier function in [7-10]. is studied. Method first part: using the cecum ligation and perforation (CLP) to induce the intestinal injury model of septic rats.72 only Wistar rats were randomly divided into 6 groups (group n=12/): sham operation group (group Sham), sham operation group +10mg/kg parinoxib sodium (group Sham+10mg/kg Parecoxib), sepsis group (group CLP), sepsis +0.1mg/kg parinoxib sodium (CLP+0.1mg/kg Parecoxib group), +1.0mg/kg palioxib sodium in sepsis, sepsis palioxib sodium. (CLP+10mg/kg Parecoxib group). Parinoxib sodium treatment group rats were intraperitoneally injected with pareoxib sodium after sham operation or CLP after CLP. After modeling 12h, the rats were repeated to a.CLP group and Sham group only by intraperitoneal injection of equal amount of saline. The survival of the rats in 7 days after operation was observed and the best treatment was screened. In sham operation or after CLP 24 H, the concentrations of plasma two amine oxidase (DAO) and D- lactate were detected by enzyme linked immunosorbent assay (ELISA) or colorimetric assay to observe the intestinal damage in rats of each group. The expression of the protein ZO-1 and Claudin-1 in intestinal tissue of the rats was detected by Western Blot method, and the peroxidation of intestinal tissue was detected by colorimetric assay. The activity level of enzyme MPO was observed in the intestinal tissue of rats in each group. The second part: the rat model of sepsis was established by cecum ligation and perforation method.32 rats were randomly divided into 4 groups (group n=8/): sham operation group (Sham), sham operation group +10mg/kg palioxib sodium (Sham+10mg/kg Parecoxib), sepsis group (CLP), +10mg/kg PA of sepsis. CLP+10mg/kg Parecoxib. After the model was established, 20min was injected into the abdominal cavity of rats by intraperitoneal injection of parecoxib sodium and injected once every 12 hours to give the sham operation group and the CLP group the same amount of normal saline. The carotid artery was intubated in rats to monitor the basic hemodynamics (MAP, HR) and facilitate the blood gas analysis monitoring. Blood gas analysis was performed with 0h, 6h and 12h after modeling, and the microcirculation changes in the mesentery of the small intestine were measured by 6h, 12h and 24h after modeling. The third part: the rat model of sepsis was established by cecal ligature and perforation. 48 Wistar male rats were established with the cecal ligation perforation method. The machine was divided into 6 experimental groups, sham operation group (group Sham), sepsis group (group CLP), sham operation + palioxib sodium group (group Sham+Parecoxib), sepsis + pareximab sodium group (group CLP+Parecoxib), +NS-398 group of sepsis (group CLP+NS-398), sepsis + pararexime sodium + NS-398 group (CLP+Parecoxib+NS-398 group).CLP+NS-398 group and CLP+Parecoxib+NS-398 group. The levels of TNF- a, IL-6 and IL-10 in the serum and intestinal tissues of rats were detected by intraperitoneal injection of NS-398 10mg/kg. before 2h, and the levels of IL-6 and IL-10 in serum and intestinal tissues, PGE2, m PGES-1 and protein expression and the level of CLP were measured. After the pretreatment, the levels of intestinal tissue were detected in the 24 groups of rats after the operation. Results first part: intraperitoneal injection of 10mg/kg parecoxib sodium can effectively improve the survival rate of 7 d in septic rats (P0.05). Palioxib sodium treatment significantly reduces the score of intestinal tissue pathological injury, reduces the activity of MPO in intestinal tissue (P0.05), and reduces the level of DAO and D- lactate in intestinal tissue of sepsis rats (P0.05). Parecoxib sodium is used in the treatment of sepsis. The protein expression of close connexin ZO-1 and Claudin-1 in the rat hindgut tissue is up regulated (P0.05). Second: the treatment of cyclooxygenase -2 inhibitor parinoxib can obviously improve the mean arterial pressure (MAP) and the decrease of heart rate (HR) (P0.05) of septic rats and improve the hemodynamics. The treatment of the cyclooxygenase -2 inhibitor pareoxib sodium can effectively improve the purulent. The arterial blood gas index of the poisoned rats decreased the lactate level (P0.05), and the treatment of the cyclooxygenase -2 inhibitor parexib sodium could increase the density of the microcirculation in the mesenteric microcirculation, the density of perfusion vessels and the blood flow index of microcirculation (P0.05). The third part: parinoxib sodium of cyclooxygenase -2 inhibitor significantly reduced the blood of sepsis rats The level of proinflammatory factor TNF- alpha and IL-6 (P0.05) and the level of anti-inflammatory factor IL-10 (P0.05) in the clear and intestinal tissues (P0.05); the anti-inflammatory effect of COX-2 inhibitor (NS-398) preconditioning was more obvious (P0.01); parinoxib sodium significantly reduced the expression of PGE2, m PGES-1, and EP4 protein in the intestinal tissue of sepsis rats. Treatment can reduce inflammatory injury of intestinal tissue, reduce intestinal permeability and improve mesenteric microcirculation. The mechanism may be related to the regulation of PGE2 expression.
【学位授予单位】:天津医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R459.7
【相似文献】
相关期刊论文 前10条
1 阎锡新;刘威威;李帅;;脓毒症发病机制及集束化治疗[J];临床荟萃;2007年22期
2 常文秀;张金钟;曹书华;;脓毒症研究的综合思路[J];医学与哲学(临床决策论坛版);2007年09期
3 幸泽茂;卢君强;;脓毒症临床治疗的研究进展[J];广东医学院学报;2008年06期
4 康焰;;脓毒症的现代诊断与治疗[J];中国呼吸与危重监护杂志;2009年02期
5 杨乐;邹晓静;李树生;万磊;姚尚龙;杨光田;;脓毒症心肌抑制研究进展[J];内科急危重症杂志;2010年01期
6 李文亮;张锦;;脓毒症休克患者免疫细胞变化与疾病演变及预后关系的研究[J];中国呼吸与危重监护杂志;2010年04期
7 张娜;谢淑霞;林广裕;;儿科常见严重病毒性脓毒症的发病机制及其治疗进展[J];实用儿科临床杂志;2010年18期
8 杨斌;文雅;;恶性肿瘤患者并发脓毒症39例临床分析[J];中国药物与临床;2011年10期
9 段青和;万艳;詹福寿;;经皮肾镜碎石取石术后尿脓毒症休克的诊治体会[J];中国医学工程;2012年01期
10 伏晓琳;刘晓义;鲁彦;郭雅琼;李宏宝;周荣;;糖调节蛋白78在脓毒症损伤心肌中表达的意义[J];医学研究杂志;2012年01期
相关会议论文 前10条
1 任海波;许卫江;;脓毒症休克治疗进展[A];第三届重症医学大会论文汇编[C];2009年
2 郑江;;天然药物拮抗脓毒症的研究进展[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年
3 金凤衿;;输新鲜血治疗脓毒症休克3例[A];2000年全国危重病急救医学学术会议论文集[C];2000年
4 马中富;;脓毒症[A];2009年全国危重病急救医学学术会议论文汇编[C];2009年
5 岳茂兴;;严重外科脓毒症的诊断和临床救治进展[A];第五届全国灾害医学学术会议暨常州市医学会急诊危重病及灾害医学专业委员会首届年会学术论文集[C];2009年
6 刘长文;;脓毒症机体发生了什么?[A];2009年浙江省危重病学学术年会论文汇编[C];2009年
7 何聪;赵鹤龄;;不同药物对脓毒症休克大鼠诱导型一氧化氮合酶及内皮素、肾脏细胞凋亡的影响[A];第三届重症医学大会论文汇编[C];2009年
8 莫绍春;马春林;;浅谈脓毒症休克的中医药治疗[A];首届全国中西医结合重症医学学术会议暨中国中西医结合学会重症医学专业委员会成立大会论文汇编[C];2010年
9 方宇;周钢桥;王志富;冯凯;罗志毅;庞伟;李垒;凌焱;李玉霞;刘保池;;髓样分化因子88基因多态性与中国人群脓毒症易感性的研究[A];第六届全国中西医结合灾害医学学术会议学术论文集[C];2010年
10 刘旭;张_g;;脓毒症心功能变化及其监测的研究进展[A];2010全国中西医结合危重病、急救医学学术会议论文汇编[C];2010年
相关重要报纸文章 前4条
1 本报记者 徐述湘;脓毒症诊疗研究期待突破[N];中国医药报;2007年
2 北京中医药大学东直门医院急诊科;基于四个环节辨治脓毒症[N];中国医药报;2009年
3 特约记者 石谙丁;小儿脓毒症抗菌要领(三)[N];医药经济报;2011年
4 顾泳 肇晖 周霄 赖鑫琳;方邦江:急诊“快郎中”[N];中国中医药报;2014年
相关博士学位论文 前10条
1 邬明;MicroRNA-23b调节脓毒症血管内皮细胞炎症因子的表达及在脓毒症患者外周血白细胞的表达[D];第三军医大学;2015年
2 陈军;腹腔开放疗法治疗腹腔感染伴腹腔间隙综合征肝功能损害的研究[D];南京大学;2009年
3 吴凡;乌司他丁及连续静脉—静脉血液滤过治疗脓毒症休克的临床及细胞学研究[D];南方医科大学;2015年
4 李霜;脓毒症的细胞生物治疗新机制—间充质干细胞抑制巨噬细胞炎症复合体3的激活[D];第四军医大学;2015年
5 周敏;HMGB1-PTEN信号对脓毒症肺损伤调节性T细胞的影响及机制[D];安徽医科大学;2015年
6 王华兵;CD4~+CD25~+调节T细胞/Thl7细胞在脓毒症大鼠中的作用[D];武汉大学;2015年
7 曹守根;富含n-3多不饱和脂肪酸的肠外营养对脓毒症免疫功能保护作用的实验研究[D];南京大学;2011年
8 王曾庚;β-受体阻滞剂治疗脓毒症相关心功能不全的临床与基础研究[D];南昌大学;2016年
9 黄炜;骨髓间充质干细胞对小鼠脓毒症后心功能障碍的疗效及机制研究[D];第四军医大学;2016年
10 刘志慧;帕瑞昔布钠对脓毒症肠屏障功能的保护效应及机制研究[D];天津医科大学;2016年
相关硕士学位论文 前10条
1 林国;乌司他丁预处理对脓毒症大鼠肝组织基因表达及相关通路的影响[D];福建医科大学;2015年
2 胥朵;脓毒症大鼠肠组织IL-6/STAT3信号通路对HMGB1表达的调控作用[D];福建医科大学;2015年
3 张振飞;乙酰胆碱及M型乙酰胆碱受体在脓毒症大鼠心肌损伤中的作用研究[D];河北联合大学;2014年
4 赵利;HO-1在脓毒症大鼠肺组织中的表达及意义[D];石河子大学;2015年
5 崔雷;低分子肝素对脓毒症大鼠肺血管内皮细胞功能的影响[D];石河子大学;2015年
6 夏为;ICU脓毒症患者临床特征及死亡相关因素分析[D];河北医科大学;2015年
7 张力;左西孟旦对严重脓毒症及脓毒症休克心肌抑制患者心功能的影响[D];河北医科大学;2015年
8 朱永蒙;胸腺五肽对脓毒症大鼠肾损伤保护作用的实验研究[D];内蒙古大学;2015年
9 赵志锐;THP-1细胞中miRNA-223、miRNA-15a和miRNA-16脓毒症相关靶基因验证[D];中国人民解放军医学院;2015年
10 李小双;地塞米松对脓毒症小鼠CD11b~+Gr-1~+髓源抑制性细胞的影响[D];安徽医科大学;2015年
,本文编号:2139381
本文链接:https://www.wllwen.com/yixuelunwen/jjyx/2139381.html