右美托咪定在脓毒症大鼠发挥肝脏保护作用的机制研究
[Abstract]:Dexmedetomidine (Dex), a highly selective alpha 2 adrenergic receptor agonist, is widely used in ICU patients because of its sedative, analgesic, sympathetic suppression and no respiratory depression. Previous studies have confirmed that dexmedetomidine can significantly improve the survival of sepsis patients and rats. However, there is no conclusive evidence to prove whether it can play a protective role in sepsis or not. And a large number of basic and clinical studies have found that the functional status of the liver can directly affect the survival rate and survival rate of patients with sepsis. In addition, a new regulated type of cell death, necroptosis, has been shown to be involved in many inflammatory diseases, and specific knockout of RIP3-necrptosis has been demonstrated to be an important link. The aim of this study was to investigate whether dexmedetopyrimidine could play a hepatoprotective role in septic rats and whether this protective effect was related to the inhibition of necroptosis. OBJECTIVE: To observe the effects of different doses of dexmedetopyrimidine on hepatic cell death in septic rats, and to explore the optimal dosage and mechanism of action. Methods: 80 healthy male SD rats of SPF grade, weighing 200-220 g, aged 6-8 weeks, were treated with caudal vein catheterization according to random number table method. They were randomly divided into five groups (n=16): sham operation group (Sh group), sepsis group (S group), high dose Dex group (H group), middle dose Dex group (M group) and low dose Dex group (L group). Ten rats in each group were selected to observe the 24-hour survival rate. Dex1h, Sh and S groups were continuously infused with normal saline of the same volume at the doses of 5.0ug/kg/h, 2.5ug/kg/h, 1.0ug/kg/h. Arterial blood gas (ABG), serum AST and ALT levels were measured at 6, 12 and 24 hours after operation, respectively. Results: Compared with Sh group, the levels of liver enzymes, lactate, IL-6 and TNF-alpha increased (P 0.05), and the levels of PaO_2 decreased (P 0.05). The morphological changes of liver were also different. Cell death was observed. Compared with S group, pretreatment with 5 ug/kg/h Dex significantly decreased the levels of liver enzymes and lactic acid, decreased the production of IL-6 and TNF-a, and improved the pathological changes of liver and reduced the death of liver cells. Both h and 5ug/kg/h Dex can protect the liver from inflammation and inhibit cell death, but 5ug/kg/h is more effective. Part 2: Types of liver cell death in sepsis Objective: To detect the expression of necroptosis-related pathway protein in liver tissue after the use of necroptosis-specific inhibitor Necrostatin-1 (Nec-1). Methods: Twenty-four healthy male SD rats of SPF grade (220-220 g, 6-8 weeks) were divided into four groups (n=6) by random number table method: sham operation group (Sh group), sepsis group (S group), solvent DMSO group (D group) and Nec-1 group (N group). Rats in groups S, D and N were treated with the same procedure as those in the first part. Group N and D were injected with 1.0mg/kg Nec-1 and D MSO via caudal vein one hour before operation, and group Sh and group S were injected with normal saline in the same way before operation. All rats were sacrificed and their livers were separated 6 hours after operation. Western blot was used to detect the expression of RIP1, RIP3 and MLKL in liver tissues, and chemical fluorescence was used to detect the content of ROS in liver tissues. Conclusion: Neroptosis is involved in the death of hepatocytes in septic rats. Part III: Dextropyrimidine can inhibit the expression of necroptosis-related pathway proteins by observing whether the use of Dex preconditioning can induce the expression of necroptosis-related pathway proteins. Methods: The experiment consisted of three parts: (1) 32 adult rats of SPF grade were randomly divided into three groups (n = 8): sham operation group (S h group), sepsis group (S group) and 5 UG / kg / h Dex group (D group). (2) Forty rats were randomly divided into five groups (n = 8). 8: Sham operation group (Sh group), sepsis group (S group), 1.0mg/kg Nec-1 group (N1 group), 0.5mg/kg Nec-1 group (N2 group) and 0.25mg/kg Nec-1 group (N3 group). (3) Twenty-four rats were divided into 3 (n=8): sham operation group (Sh group), sepsis group (S group), Dex combined with Nec-1 group (ND group). Results: (1) Compared with Sh group, RIML, RIP3, KL and ROHB1 levels in S and D groups were up-regulated. Compared with S group, the expression of three proteins and the level of ROS in Dex pretreated rats were all down-regulated (P 0.05); (2) Compared with Sh group, the expression of four proteins in other four groups were up-regulated (P 0.05); compared with S group, the expression of four proteins in N1 and N2 groups were down-regulated (P 0.05), but there was no significant difference in N3 group (P 0.05) (3) compared with Sh group and ND group. Compared with S group, the expression of four proteins in ND group was down-regulated (P 0.05). CONCLUSION: dexmedetopyrimidine can protect the liver by inhibiting the occurrence of necroptosis in liver cells in sepsis.
【学位授予单位】:天津医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R459.7
【相似文献】
相关期刊论文 前10条
1 白祥军;唐朝晖;;重视脓毒症的早期诊断与临床干预[J];临床急诊杂志;2006年05期
2 阎锡新;刘威威;李帅;;脓毒症发病机制及集束化治疗[J];临床荟萃;2007年22期
3 常文秀;张金钟;曹书华;;脓毒症研究的综合思路[J];医学与哲学(临床决策论坛版);2007年09期
4 幸泽茂;卢君强;;脓毒症临床治疗的研究进展[J];广东医学院学报;2008年06期
5 康焰;;脓毒症的现代诊断与治疗[J];中国呼吸与危重监护杂志;2009年02期
6 杨乐;邹晓静;李树生;万磊;姚尚龙;杨光田;;脓毒症心肌抑制研究进展[J];内科急危重症杂志;2010年01期
7 李文亮;张锦;;脓毒症休克患者免疫细胞变化与疾病演变及预后关系的研究[J];中国呼吸与危重监护杂志;2010年04期
8 张娜;谢淑霞;林广裕;;儿科常见严重病毒性脓毒症的发病机制及其治疗进展[J];实用儿科临床杂志;2010年18期
9 杨斌;文雅;;恶性肿瘤患者并发脓毒症39例临床分析[J];中国药物与临床;2011年10期
10 段青和;万艳;詹福寿;;经皮肾镜碎石取石术后尿脓毒症休克的诊治体会[J];中国医学工程;2012年01期
相关会议论文 前10条
1 任海波;许卫江;;脓毒症休克治疗进展[A];第三届重症医学大会论文汇编[C];2009年
2 郑江;;天然药物拮抗脓毒症的研究进展[A];第七届全国创伤学术会议暨2009海峡两岸创伤医学论坛论文汇编[C];2009年
3 金凤衿;;输新鲜血治疗脓毒症休克3例[A];2000年全国危重病急救医学学术会议论文集[C];2000年
4 马中富;;脓毒症[A];2009年全国危重病急救医学学术会议论文汇编[C];2009年
5 岳茂兴;;严重外科脓毒症的诊断和临床救治进展[A];第五届全国灾害医学学术会议暨常州市医学会急诊危重病及灾害医学专业委员会首届年会学术论文集[C];2009年
6 刘长文;;脓毒症机体发生了什么?[A];2009年浙江省危重病学学术年会论文汇编[C];2009年
7 何聪;赵鹤龄;;不同药物对脓毒症休克大鼠诱导型一氧化氮合酶及内皮素、肾脏细胞凋亡的影响[A];第三届重症医学大会论文汇编[C];2009年
8 莫绍春;马春林;;浅谈脓毒症休克的中医药治疗[A];首届全国中西医结合重症医学学术会议暨中国中西医结合学会重症医学专业委员会成立大会论文汇编[C];2010年
9 方宇;周钢桥;王志富;冯凯;罗志毅;庞伟;李垒;凌焱;李玉霞;刘保池;;髓样分化因子88基因多态性与中国人群脓毒症易感性的研究[A];第六届全国中西医结合灾害医学学术会议学术论文集[C];2010年
10 刘旭;张_g;;脓毒症心功能变化及其监测的研究进展[A];2010全国中西医结合危重病、急救医学学术会议论文汇编[C];2010年
相关重要报纸文章 前10条
1 本报记者 徐述湘;脓毒症诊疗研究期待突破[N];中国医药报;2007年
2 北京中医药大学东直门医院急诊科;基于四个环节辨治脓毒症[N];中国医药报;2009年
3 特约记者 石谙丁;小儿脓毒症抗菌要领(三)[N];医药经济报;2011年
4 顾泳 肇晖 周霄 赖鑫琳;方邦江:急诊“快郎中”[N];中国中医药报;2014年
5 记者 冯卫东;大鼠研究显示孕期压力或可代代相传[N];科技日报;2014年
6 奇 云;解读大鼠基因有助人类攻克疑难病症[N];大众科技报;2004年
7 张天行;克隆大鼠意义重大[N];中国医药报;2003年
8 本报特约撰稿人 陆志城;用大鼠还是用小鼠?[N];医药经济报;2004年
9 记者 蓝建中;日本研究:骨髓移植使大鼠血管“返老还童”[N];新华每日电讯;2010年
10 记者 姜澎;聪明大鼠 解密大脑记忆功能[N];文汇报;2009年
相关博士学位论文 前10条
1 陶小根;川芎嗪改善脓毒症大鼠肝细胞线粒体功能障碍及其分子机制的研究[D];山东大学;2017年
2 邬明;MicroRNA-23b调节脓毒症血管内皮细胞炎症因子的表达及在脓毒症患者外周血白细胞的表达[D];第三军医大学;2015年
3 陈军;腹腔开放疗法治疗腹腔感染伴腹腔间隙综合征肝功能损害的研究[D];南京大学;2009年
4 吴凡;乌司他丁及连续静脉—静脉血液滤过治疗脓毒症休克的临床及细胞学研究[D];南方医科大学;2015年
5 李霜;脓毒症的细胞生物治疗新机制—间充质干细胞抑制巨噬细胞炎症复合体3的激活[D];第四军医大学;2015年
6 周敏;HMGB1-PTEN信号对脓毒症肺损伤调节性T细胞的影响及机制[D];安徽医科大学;2015年
7 曹守根;富含n-3多不饱和脂肪酸的肠外营养对脓毒症免疫功能保护作用的实验研究[D];南京大学;2011年
8 王曾庚;β-受体阻滞剂治疗脓毒症相关心功能不全的临床与基础研究[D];南昌大学;2016年
9 黄炜;骨髓间充质干细胞对小鼠脓毒症后心功能障碍的疗效及机制研究[D];第四军医大学;2016年
10 刘志慧;帕瑞昔布钠对脓毒症肠屏障功能的保护效应及机制研究[D];天津医科大学;2016年
相关硕士学位论文 前10条
1 张瑜;右美托咪定在脓毒症大鼠发挥肝脏保护作用的机制研究[D];天津医科大学;2017年
2 林国;乌司他丁预处理对脓毒症大鼠肝组织基因表达及相关通路的影响[D];福建医科大学;2015年
3 胥朵;脓毒症大鼠肠组织IL-6/STAT3信号通路对HMGB1表达的调控作用[D];福建医科大学;2015年
4 张振飞;乙酰胆碱及M型乙酰胆碱受体在脓毒症大鼠心肌损伤中的作用研究[D];河北联合大学;2014年
5 赵利;HO-1在脓毒症大鼠肺组织中的表达及意义[D];石河子大学;2015年
6 崔雷;低分子肝素对脓毒症大鼠肺血管内皮细胞功能的影响[D];石河子大学;2015年
7 夏为;ICU脓毒症患者临床特征及死亡相关因素分析[D];河北医科大学;2015年
8 张力;左西孟旦对严重脓毒症及脓毒症休克心肌抑制患者心功能的影响[D];河北医科大学;2015年
9 朱永蒙;胸腺五肽对脓毒症大鼠肾损伤保护作用的实验研究[D];内蒙古大学;2015年
10 赵志锐;THP-1细胞中miRNA-223、miRNA-15a和miRNA-16脓毒症相关靶基因验证[D];中国人民解放军医学院;2015年
,本文编号:2217831
本文链接:https://www.wllwen.com/yixuelunwen/jjyx/2217831.html