半监督SVM在阿尔茨海默症数据分析中的应用
[Abstract]:Alzheimer's disease (AD) is a chronic disease characterized by cognitive impairment. With the development of biomedicine, there are more and more data on Alzheimer's disease, but these data sets have the characteristics of high dimension, various forms and uneven distribution. How to make effective use of these complex data has become a hot issue in big data's time. Support vector machine (SVM) is a new tool for data mining based on statistical learning theory. However, the method can not recognize fuzzy labeled samples, nor can it use unlabeled samples, which leads to the deviation of model classification results. In order to deal effectively with complex data in Alzheimer's disease and not to waste a large number of valuable unlabeled samples, an improved support vector machine (SVM) algorithm is introduced. The fuzzy support vector machine (FSVM) and semi-supervised support vector machine (S3VM) are applied to the classification of Alzheimer's disease data. The accuracy of the classification results is observed by experiments. The main contents and results are as follows: (1) at first, the feature extraction method is used to process the data. In order to reduce the dimension of the data, 11 factor variables were extracted from 55 characteristic variables of 121 Alzheimer's data using principal component analysis. And these factor variables can basically represent all the information of the data. (2) the theoretical framework of support vector machine (SVM) is studied. For the kernel function and parameter problem in the SVM model, the classification experiments are carried out by setting different values. The degree of influence on classification accuracy was observed. The experimental results show that the SVM algorithm can effectively analyze Alzheimer's disease data, and the classification accuracy of test samples can reach 92.157. (3) the theoretical framework of fuzzy support vector machine (FSVM) is studied. The first three principal components and the first two principal components of 11 characteristic variables of Alzheimer's data set were selected for model training. Because the fuzzy factors in the FSVM algorithm can identify some special sample points, it is possible to distinguish the sample points with large amount of information from the useless noise points by giving different samples different membership values. A fuzzy C-means clustering method based on FSVM was used to classify 121 samples from Alzheimer's disease data set, and a more accurate classification result was obtained. The accuracy of negative class prediction is 95.455, but the accuracy of positive class is slightly lower. (4) the theoretical algorithm of semi-supervised support vector machine is studied, and the influence of various functions and parameters in the model on the classification results is analyzed. And find out the best learning model according to the parameter optimization. The experimental results show that the classification accuracy is 94.118% and the results are stable, which indicates that the S3VM method can improve the classification accuracy of the model by synthesizing the distribution information of labeled and unlabeled samples. Through theoretical research and experimental verification, we can see that the third model of support vector machine studied in this paper is semi-supervised support vector machine, compared with the other two models. It has higher and more stable classification accuracy in the analysis of Alzheimer's disease data. The results show that this method can effectively predict whether the elderly have Alzheimer's disease by classifying the brain function data, so as to better assist doctors in the diagnosis and treatment of AD.
【学位授予单位】:南阳师范学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R749.16
【相似文献】
相关期刊论文 前10条
1 Dena Shenk;林敏霞;;阿尔茨海默症患者认同维持的叙事研究[J];广西民族大学学报(哲学社会科学版);2008年01期
2 于晓刚;徐凌忠;;阿尔茨海默症研究进展[J];社区医学杂志;2009年15期
3 ;科研人员发现3个与阿尔茨海默症有关的基因[J];中国当代医药;2009年19期
4 张玉勤;;通过嗅觉试验能否早期诊断阿尔茨海默症[J];国外医学情报;1993年19期
5 张玉勤;;阿尔茨海默症的新诊断方法[J];国外医学情报;1995年06期
6 ;美曲膦酯治疗阿尔茨海默症的认知缺陷[J];国外医药(合成药 生化药 制剂分册);1999年03期
7 船舷;;铝过量是阿尔茨海默症的重要诱因[J];长寿;2014年01期
8 林晓文;从里根去世看“阿尔茨海默症”[J];家庭中医药;2005年11期
9 戎辉;;阿尔茨海默症青睐哪些人[J];金秋;2012年24期
10 卓然;;预防阿尔茨海默症有良方[J];长寿;2013年04期
相关会议论文 前10条
1 刘玲玲;龚锴;盛柏杨;闫玉芳;郑辉;张秀芳;赵南明;公衍道;;不同年龄和基因型阿尔茨海默症小鼠海马新生神经元数量的差异[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
2 熊晓云;邹永;吴玉梅;朱杰;梅其炳;;三种阿尔茨海默症治疗药物促体外培养小鼠皮层神经元活性的比较[A];中国药理学会第八次全国代表大会论文摘要集(第二部分)[C];2002年
3 段迪;凌迎春;周月琴;;血管性痴呆及阿尔茨海默症患者血清甘油三酯和总胆固醇变化的临床研究[A];2009年浙江省医学会精神病学分会老年精神障碍学组学术会议论文汇编[C];2009年
4 韩铁钢;张竞;韩轶星;茹炳根;;应用比较蛋白质组学研究神经生长抑制因子与阿尔茨海默症的关系[A];中国蛋白质组学第三届学术大会论文摘要[C];2005年
5 段迪;凌迎春;周月琴;;血管性痴呆及阿尔茨海默症患者血清甘油三酯和总胆固醇变化的临床研究[A];2007年浙江省精神病学学术年会论文汇编[C];2007年
6 谢盈瑞;;阿尔茨海默症所引发的抑郁症及护理[A];2007河南省精神卫生学术研讨会资料汇编[C];2007年
7 朱静静;窦非;;热休克蛋白90抑制剂降低阿尔茨海默症β淀粉样肽的作用机制初步研究[A];中国遗传学会“发育、遗传和疾病”研讨会论文汇编集[C];2007年
8 熊晓云;邹永;吴玉梅;朱杰;梅其炳;;三种阿尔茨海默症治疗药物促体外培养小鼠皮层神经元活性的比较[A];中国药理学会第八次全国代表大会暨全国药理学术会议论文摘要汇编[C];2002年
9 贾卫平;焦勇;杨频;;金属离子与Aβ肽竞争取代理作用的论研究[A];第五届全国化学生物学学术会议论文摘要集[C];2007年
10 焦勇;贾卫平;韩大雄;杨频;;分子模拟研究铜离子对Aβ肽聚集行为的调控机理[A];第五届全国化学生物学学术会议论文摘要集[C];2007年
相关重要报纸文章 前10条
1 本报记者 贾岩;阿尔茨海默症药研盯上创新中药[N];医药经济报;2013年
2 记者 李颖;中国需改进阿尔茨海默症诊断照护体系[N];科技日报;2014年
3 刘海英;瑞典发现阿尔茨海默症生物新标志[N];科技日报;2009年
4 重庆万州 王祖远;多吃鱼蔬少吃红肉可预防阿尔茨海默症[N];上海中医药报;2012年
5 记者 邓晖;施一公研究组揭示阿尔茨海默症致病蛋白结构[N];光明日报;2014年
6 赵婀娜 章正;阿尔茨海默症研究获突破[N];人民日报;2014年
7 ;阿尔茨海默症:防胜于治[N];文汇报;2011年
8 本报记者 王潇;被擦去的记忆[N];解放日报;2013年
9 ;学外语有助延缓智衰[N];新华每日电讯;2011年
10 ;新型医用染料可用于阿尔茨海默症诊断[N];中国纺织报;2005年
相关博士学位论文 前4条
1 朱e,
本文编号:2208088
本文链接:https://www.wllwen.com/yixuelunwen/jsb/2208088.html