GPR50调控β-淀粉样蛋白产生的机制研究
[Abstract]:Background and purpose of the study: Alzheimer's disease (AD) is a common neurodegenerative disease, and its clinical manifestations are memory and cognitive function. Obstacles. AD in the pathology mainly includes the nerve fiber entanglement and the extracellular starch in the nerve cell The main component of the amyloid plaques is the peptide of the P-amyloid (A-type) in the outside of the cell. The effect of AICD on the loss of the spinous process of the nerve, the inhibition of the plasticity of the nerve, the apoptosis of the cells and so on. Therefore, inhibition or reduction of the generation of A-type is an important part of the current AD treatment Direction. The enzyme is the main speed-limiting enzyme of the starch-like pathway, and BACE1 is the main speed-limiting enzyme of the beta-site APP-cleaning enzyme. It plays a key role in the production of A-enzyme and is in the brain. The expression of BACE1 in the brain of AD patients and the activity of BACE1 in the brain of AD patients. So how to control BACE1 and reduce the generation of A-type is one of the areas of AD research. In recent years, more and more studies have shown that G-protein-coupled receptor (GPCR) has been in the process of AD. It plays an important role in the process. It can regulate the metabolism of APP in the brain by regulating the activity of the P-, The GPR50, as a member of the GPCRs family, is a G-protein-coupled receptor, and the GPR50 is expressed in the dentate nucleus of the hippocampus of the human brain. In combination with the above research background, it is suggested that the GPR50 may be involved in the pathogenesis of AD, this study is to explore the mechanism of action of GPR50 on the amyloid-like protein, and to develop and develop the drug for AD. Diagnosis and treatment providing section Basis of study. Study content: 1, GP R50 impact on A-level and mechanism. 2, GP R50 Effects on BACE1 and Mechanism of Action. Method: 1, fine Detection of cell viability: Cell viability was detected using the MTT assay. 2, GPR50, BACE1, APP were in the human brain or cell The distribution and co-location of GPR50mRNA and BACE1mR were detected by immunofluorescent techniques. Horizontal expression of NA: combined with RT-PCR and agarose gel electrophoresis. A-40, A-42 concentration detection: detection by ELISA method with reference to the specification. 5. Detection of protein expression level: use of the Westin The expression of GPR50, BACE1, APP, CTFs and lysosomes were detected by n-blot. Sex: Test according to the Manual-Secrease Activity Assay Kit instructions. 7, GPR50 vs. (BAC) E1, GPR50 and APP protein cross-correlation System: The relationship between protein and protein was studied by the method of immunoprecipitation. Results: 1. The control effect of GPR50 on A-antigen was 1. 1GPR50 inhibited the production of A and the metabolism of APP. 1. The 2GPR50 plasmid was transfected into HEK-APP cells to inhibit the production of A-antigen 40 and A-antigen 42, and to inhibit the production the expression dose-dependent effect. 1. 3 in primary cultured neurons in that expression of the GPR50 siRNA-silent GPR50, a significant increase in the level of A-antigen was found. The GPR50 is produced by the regulation of the inhibition of A-enzyme by the hormone-secreting enzyme. Over-expression of the GPR50 can reduce the level of expression of the F-CTF, The level of F-CTF expression did not change significantly. The regulation and mechanism of GPR50 on BACE1 2. 1GPR50 co-located with BACE1 and interacts. 2. 2 in HEK-293 The expression of GPR50, BACE1 activity and protein level in the cells was significantly reduced. The overexpression of GPR50 did not affect the HEK-293 cells and the gods. Overexpression of GPR50 could accelerate the degradation of BACE1 protein after the treatment with a lysosome inhibitor of BACE1mRNA. R50-FLAG and BACE1-HA significantly increased the ratio of BACE1 and LAMP-1 co-localization; the ratio of BACE1 and LAMP-1 co-location decreased after silence GPR50 expression. Conclusion: GPR50 is inhibited by inhibition of B
【学位授予单位】:苏州大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R749.16
【共引文献】
相关期刊论文 前10条
1 叶斌;周农;张干;刘睿;;主观记忆损害的神经心理学特征和认知事件相关电位P300的变化[J];蚌埠医学院学报;2013年09期
2 李兴强;曹云鹏;;脑老化与β淀粉样蛋白沉积[J];国际神经病学神经外科学杂志;2013年Z1期
3 邵奕嘉;陈莉智;罗利;郭开华;徐杰;;金雀异黄酮对冈田酸诱导大鼠血小板Tau蛋白过度磷酸化的保护作用及机制[J];解剖学研究;2014年01期
4 朱丽娟;陈筱山;何选丽;戚韵雯;晏勇;;外源性硫化氢对高糖条件下原代神经元β淀粉样蛋白的影响[J];南方医科大学学报;2014年04期
5 张晓;魏平;谭明红;张艳伟;张久权;;2型糖尿病患者糖化血红蛋白水平控制及胰岛素使用对认知功能的影响[J];第三军医大学学报;2014年10期
6 张玉琴;韩岱;叶小苹;吴晓宇;;脑梗死后认知功能与血尿酸的关系[J];安徽医学;2014年08期
7 方旭明;刘芳;朱英武;武琪;徐竹;陈红群;楚兰;;贵阳市农村老年人轻度认知功能障碍筛查[J];贵阳医学院学报;2014年04期
8 陈黛琪;范胜兰;;痴呆患者院内走失事件原因分析[J];神经损伤与功能重建;2014年05期
9 王雪峰;孔祥俊;;抑郁症和痴呆关系的meta分析[J];甘肃医药;2014年09期
10 王延江;卜先乐;;阿尔茨海默病的防治研究进展[J];第三军医大学学报;2014年21期
相关会议论文 前1条
1 潘攀;梁跃;万明雨;唐渊博;;三焦针法治疗老年痴呆机制的基础研究进展[A];中华中医药学会养生康复分会第十二次学术年会暨服务老年产业研讨会论文集[C];2014年
相关博士学位论文 前10条
1 时建铨;新型抗癫痫药对APPswe/PS1dE9双转基因小鼠病理学与行为学的影响及机制研究[D];南京医科大学;2013年
2 牛海晨;重复吗啡注射诱导生理戒断和心理渴求的神经影像学与行为学研究[D];中国科学院研究生院(武汉物理与数学研究所);2012年
3 常晓慧;组分中药金智达对认知功能的改善及其相关机制的研究[D];大连医科大学;2012年
4 霍妍;Nogo氨基末端在视神经再生中的作用及机制研究[D];第三军医大学;2013年
5 曾育琦;雷公藤氯内酯醇通过改善突触可塑性、调节Aβ代谢、抑制神经炎症反应减轻5XFAD转基因小鼠的认知损害[D];福建医科大学;2013年
6 杨振东;钙稳态失衡对钙记忆相关蛋白表达的影响机制及钙离子调节剂临床疗效的荟萃分析[D];华中科技大学;2013年
7 王景涛;载脂蛋白E基因多态性与中国汉族不同类型痴呆关系的研究[D];北京协和医学院;2010年
8 张婷;淫羊藿苷联用三七总皂苷对AD模型鼠学习记忆的影响及其作用机制探讨[D];中南大学;2013年
9 帕丽丹·吾术尔;老年痴呆异常黑胆质病证结合模型的建立及异常黑胆质成熟剂的干预研究[D];新疆医科大学;2013年
10 覃媛媛;全脑定量结构MRI和DTI对阿尔茨海默病的实验和临床研究[D];华中科技大学;2013年
相关硕士学位论文 前10条
1 田辉宇;蛋白激酶C在炎症大鼠下丘脑弓状核神经元可塑性变化中的作用[D];苏州大学;2013年
2 周宗丽;三转基因Alzheimer症模型小鼠的社会行为学和一种新型M1受体激动剂对该小鼠的影响[D];华东师范大学;2013年
3 郭晓光;EGCG对阿尔茨海默病模型大鼠海马c-Abl/p73信号通路的影响[D];河北医科大学;2013年
4 牟佩佩;血小板Sema4D钙调蛋白结合基序的鉴定及其调控Sema4D切割的机制研究[D];苏州大学;2013年
5 阳玉群;甘露醇对骨髓间充质干细胞治疗血管性痴呆模型大鼠行为学及Nogo蛋白表达影响[D];广西医科大学;2013年
6 王飞;苄基哌啶类衍生物的设计、合成与多靶点抗AD活性研究[D];浙江大学;2013年
7 梁良;中药I号对APP/PS1双转基因阿尔兹海默病模型小鼠治疗作用的机制研究[D];北京协和医学院;2013年
8 赵钧如;ABIN1与μ阿片受体功能的相互调节[D];中国人民解放军军事医学科学院;2013年
9 黄海芬;功能性经颅多普勒对AD与VaD患者胆碱酯酶抑制剂疗效的评价[D];南华大学;2013年
10 叶青;康复训练通过调控海马β淀粉样蛋白表达改善血管性痴呆[D];南华大学;2013年
本文编号:2339277
本文链接:https://www.wllwen.com/yixuelunwen/jsb/2339277.html