当前位置:主页 > 医学论文 > 精神病论文 >

基于大脑结构网络特征的遗忘型轻度认知障碍诊断模型

发布时间:2019-06-18 14:03
【摘要】:选取与认知表现分数相关性高的结构网络拓扑特征,利用这些特征建立分类模型,实现对正常老化者及遗忘型轻度认知障碍(aMCI)患者的分类。本研究包含两组扩散张量影像(DTI)数据,一组为52例正常老化受试者,一组为39例aMCI患者。分别对两组数据进行结构网络构建,采用图论分析法提取结构网络的特征,将所有特征与简单智能状态检查量表(MMSE)分数进行相关性分析,选取与认知表现分数高度相关的特征,基于这些特征建立5种分类模型,并对模型的分类效果进行评估。对于正常老化数据,选出18个与认知能力显著相关的结构网络特征,集中于解剖自动贴标(AAL)图谱中的9个脑区;对于aMCI数据,也选出18个与认知能力显著相关的结构网络特征,集中于AAL图谱中的9个脑区;二者选出的特征及分布的脑区是不同的。通过对分类模型的评估,得出支持向量机序列最小优化算法建立的模型分类效果最佳,特异性达到88.46%,敏感性达到83.05%,准确性达到85.71%。所提取的与认知表现相关性高的结构网络特征,可以作为生物标记指针,来建立分类模型,对正常老化者及aMCI患者进行分类,也可提供相应脑区间连接变化的信息。
[Abstract]:The structural network topological features with high correlation with cognitive performance scores were selected and used to establish classification models to classify (aMCI) patients with normal aging and amnesia mild cognitive impairment. This study included two groups of diffusion tensor imaging (DTI) data, one group of 52 normal aging subjects and the other group of 39 patients with aMCI. The structural network of the two groups of data is constructed respectively. The features of the structural network are extracted by graph theory analysis. The correlation between all the features and the (MMSE) score of the simple Intelligent State examination scale is analyzed. The features highly related to the cognitive performance score are selected. Based on these features, five classification models are established, and the classification effect of the model is evaluated. For the normal aging data, 18 structural network features significantly related to cognitive ability were selected, focusing on 9 brain regions in the anatomical automatic labeling (AAL) map, and for aMCI data, 18 structural network features significantly related to cognitive ability were also selected, concentrated in 9 brain regions in the AAL map, and the selected characteristics and distributed brain regions were different. Through the evaluation of the classification model, it is concluded that the model established by the support vector machine sequence minimum optimization algorithm has the best classification effect, the specificity is 88.46%, the sensitivity is 83.05%, and the accuracy is 85.71%. The extracted structural network features, which are highly correlated with cognitive performance, can be used as biomarkers to establish classification models to classify normal aging patients and aMCI patients, and can also provide information on the changes of connections between brain regions.
【作者单位】: 北京工业大学生命科学与生物工程学院;长庚大学资讯工程学系;长庚大学健康老化中心;阳明大学生物医学影像暨放射科学系;阳明大学医学系;
【基金】:长庚大学研究计划(UERPD2B0301,UERPD2C0041) 长庚大学健康老化中心计划(CMRPD1B0331,EMRPD1D0261)
【分类号】:R749.1

【相似文献】

相关期刊论文 前10条

1 贾建平;重视轻度认知障碍与老年性痴呆关系的研究[J];中华神经科杂志;2002年06期

2 黄觉斌,张振馨;轻度认知障碍的现代概念和研究进展[J];中华神经科杂志;2002年06期

3 白静,王荫华,翁旭初,谢晟;轻度认知障碍患者计算能力的fMRI研究[J];中国康复理论与实践;2003年05期

4 周卫东,贾建平;血浆血红素加氧酶1测定在轻度认知障碍和老年性痴呆中的临床意义[J];中国神经精神疾病杂志;2004年04期

5 熊光润,陈静,王虹敏,顾昱,熊芳琴,冯玲,谭晓敏,王静;轻度认知障碍患者情感图片再认的研究[J];神经疾病与精神卫生;2004年03期

6 周爱红,王荫华,周晓林;轻度阿尔茨海默病患者和轻度认知功能障碍患者注意功能的研究(英文)[J];中国临床康复;2005年05期

7 李刚;;老年认知障碍的流行性与严重性[J];国外医学.老年医学分册;1998年04期

8 王利平;王鑫;南光贤;;脑梗死后血管性认知障碍的临床观察[J];中国实验诊断学;2008年05期

9 马立华;;轻度认知障碍研究现状[J];中国医学文摘.内科学;2004年01期

10 刘建辉;冀凤云;;血管性认知障碍与轻度认知障碍的研究进展[J];中国脑血管病杂志;2007年05期

相关会议论文 前10条

1 陈健华;唐牟尼;;广州市城乡养老院60岁以上人群,轻度认知障碍和痴呆患者死亡率和生存率的研究[A];中华医学会精神病学分会第九次全国学术会议论文集[C];2011年

2 岳春贤;张志s,

本文编号:2501544


资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/jsb/2501544.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3fc76***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com