基于3D打印模具的陶瓷义齿等静压成型研究
本文选题:逆向工程 切入点:义齿模具 出处:《西安工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着人们饮食结构和用牙习惯的改变,牙齿健康问题日益凸显,因此对牙齿修复的需求也呈快速上升趋势。牙齿修复过程中的义齿制作是至关重要的。陶瓷以其良好的材质性能成为目前最理想的牙齿修复材料深受牙医和患者的推崇。针对目前陶瓷义齿制造过程中陶瓷材料加工性能差、口腔修复CAD/CAM系统设备研发难度大及费用昂贵等问题,本文就陶瓷义齿坯体的制作提出了一种基于3D打印模具的陶瓷义齿等静压成型方法。结合逆向工程技术、3D打印等技术实现了义齿模具的制作,采用等静压成型技术实现陶瓷义齿坯体的直接压制成型,通过对坯体成型过程中的收缩率进行补偿后制备出了在形状尺寸上符合目标要求的义齿坯体。首先,对义齿模具进行设计制作。利用光学扫描仪对牙齿样品进行三维扫描测量,将得到的牙齿点云数据去噪优化、曲面重构、造型拟合等处理后得到牙齿表面曲面模型。在Creo Elements/Pro 5.0环境中逆向构建出义齿模具的三维模型,采用3D打印技术实现义齿模具的制作。其次,对陶瓷义齿坯体等静压成型过程进行仿真分析,并采用等静压机压制出陶瓷义齿坯体。使用ABAQUS有限元软件对陶瓷义齿坯体等静压成型过程进行了仿真,得到了义齿坯体在成型过程中的形状变化云图,对陶瓷义齿坯体真实的等静压成型过程在理论上做出了预测。通过真实的等静压成型实验制备出了陶瓷义齿坯体,并对成型的义齿坯体在形状和表面质量上进行了分析。最后,计算等静压成型过程收缩率,对模具进行补偿设计。针对义齿坯体这种复杂形面的结构,采用特殊点标记测量法得到了义齿坯体在等静压成型过程中形面上各标记点的收缩率。对各标记点收缩率进行比较分析后可以近似认为义齿坯体的呈现整体收缩,并计算出了整体收缩率。通过对义齿模具进行收缩率误差补偿后设计制作出了新的义齿模具,采用误差补偿后的义齿模具制备出的义齿坯体在形状尺寸上满足目标义齿坯体的要求。尝试性地探索出了一种基于3D打印模具的陶瓷义齿等静压成型方法及具体制备流程。本文探索了一种新型的基于3D打印模具的陶瓷义齿等静压成型方法,将新型的3D打印技术和传统的等静压成型技术相结合,具有工艺简单,成本低,效率高的特点。
[Abstract]:As people's diet and habits change, dental health problems become increasingly prominent. Therefore, the demand for dental restoration is also rising rapidly. The manufacture of denture is very important. Ceramic has become the most ideal dental restoration material for dentists and patients because of its good material properties. In view of the poor processing performance of ceramic materials in the process of manufacturing ceramic dentures, Dental repair CAD/CAM system equipment R & D is difficult and expensive and other problems, In this paper, an isostatic molding method of ceramic denture based on 3D printing mould is proposed, and the manufacture of denture mould is realized by using reverse engineering technology and 3D printing technology. Adopting isostatic pressing technology to realize the direct pressing molding of ceramic denture billet, by compensating the shrinkage rate during the forming process, the shape and size of the denture blank body is prepared. First, the shape and size of the denture blank body meet the requirements of the target. The denture mould is designed and manufactured. The 3D scanning measurement of the tooth sample is carried out by optical scanner. The point cloud data of the tooth are denoised and optimized, and the surface is reconstructed. After modeling fitting, the surface surface model of teeth is obtained. The 3D model of denture mold is constructed in Creo Elements/Pro 5.0 environment, and the 3D printing technology is used to make the denture mold. Secondly, the 3D printing technology is used to make the denture mold. The forming process of ceramic denture blank by isostatic pressing was simulated and the process of equal static pressing was simulated by using ABAQUS finite element software. In this paper, the shape change cloud diagram of denture blank during forming process is obtained, and the true isostatic pressing process of ceramic denture blank is predicted theoretically, and the ceramic denture billet is prepared by real isostatic pressing experiment. The shape and surface quality of the finished denture are analyzed. Finally, the shrinkage rate during isostatic pressing is calculated, and the die compensation is designed. The shrinkage rate of the mark points on the shape surface of the denture billet during isostatic pressing was obtained by using the method of special spot marking. The shrinkage rate of each mark point can be approximately considered as the whole shrinkage of the denture blank after the comparison and analysis of the shrinkage rate of each mark point. By compensating the shrinkage error of the denture die, a new denture mould is designed and made. The blank of denture made by error compensated denture mould meets the requirements of target denture body in shape and size. This paper tries to explore an isostatic molding method of ceramic denture based on 3D printing mould and its concrete. In this paper, a new method of isostatic pressing of ceramic denture based on 3D printing mould is explored. The new 3D printing technology is combined with the traditional isostatic pressing technology, which has the advantages of simple process, low cost and high efficiency.
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ174.62;R783.1
【相似文献】
相关期刊论文 前1条
1 梁晓峰;尹光福;杨世源;王军霞;;利用等静压技术制备牙科Al_2O_3/ZrO_2陶瓷材料[J];华西口腔医学杂志;2006年04期
相关会议论文 前8条
1 鲁燕萍;;陶瓷冷等静压成型技术[A];真空电子与专用金属材料、陶瓷——金属封接专辑[C];2011年
2 唐文龙;刘晓波;;一种复合材料等静压成型技术[A];中国工程物理研究院科技年报(2001)[C];2001年
3 宋杰光;黄进财;刘勇华;刘慧;黄顺旺;黄浩;吴伯麟;;等静压成型压力对石英砂烧结砖性能的影响研究[A];中国硅酸盐学会陶瓷分会2009年年会论文集(二)[C];2009年
4 杨东亮;杨庆伟;王安英;韩晓东;;等静压电真空陶瓷管壳的研制与性能探讨[A];陶瓷—金属封接技术进步和应用研讨会论文集[C];2004年
5 雍炼;;JB-9014等静压成型件的力学及热性能[A];中国工程物理研究院科技年报(2005)[C];2005年
6 钟莲云;吴伯麟;张联盟;张桂芳;宋杰光;;用辊道窑炉底辊生产废料制备高耐磨瓷球[A];中国复合材料学会2004年年会论文集[C];2004年
7 吴爱军;胡宝玉;马旭峰;;等静压生产烧结AZS砖的开发[A];全国第五届浮法玻璃及深加工玻璃技术研讨会论文集[C];2003年
8 韩超;;JB-9014炸药件等静压成型工艺[A];中国工程物理研究院科技年报(2000)[C];2000年
相关硕士学位论文 前8条
1 徐晓强;吸气材料的冷等静压制备工艺及性能研究[D];北京有色金属研究总院;2016年
2 李玉仁;日用陶瓷等静压加压过程的数值模拟[D];景德镇陶瓷学院;2008年
3 王次明;大尺寸薄壁陶瓷缸套等静压成型过程的数值模拟研究[D];天津大学;2007年
4 施辉献;等静压石墨的成型工艺研究[D];昆明理工大学;2013年
5 柯林松;多孔β-TCP生物陶瓷的等静压成型[D];武汉理工大学;2006年
6 董震;陶瓷粉末压制成型过程数值模拟的研究[D];天津大学;2005年
7 谢文蛟;原料及制备工艺对等静压石墨材料结构与性能的影响[D];湖南大学;2013年
8 杨猛;等静压石墨焙烧与浸渍工艺研究[D];昆明理工大学;2013年
,本文编号:1592482
本文链接:https://www.wllwen.com/yixuelunwen/kouq/1592482.html