不同冠根比短种植体在上颌窦区的三维有限元分析
本文选题:上颌窦 切入点:短种植体 出处:《山东大学》2016年硕士论文 论文类型:学位论文
【摘要】:目的:运用三维有限元分析法(three-dimensional finite element method,FEM)分析,当短种植体联合上颌窦内提升(maxillary sinus lift)运用于上颌后牙区垂直骨量高度不足的情况时,不同种植体冠根比(crown to implant ratio,C/IR)以及不同松质骨密度,是否会影响种植体以及相应的骨质区域所受应力情况,从而对种植修复设计起到临床指导作用。材料及方法:(1)以BICON6x5.7mm种植体为样本,运用UG NX8.5软件,绘制含有短种植体的高度吸收的上颌窦区骨块模型。上颌窦区分为三个区域分别为皮质骨区,松质骨区及骨替代品区,种植体底端离上颌窦底为1mm, C/IR分别为1:1、1.5:1、2:1、2.5:1、3:1,相应松质骨密度分别为二类、三类、四类的5组模型。(2)分别对5组模型施加垂直向和45度斜向的力量,大小分别为150N和50N.(3)运用三维有限元分析法,通过ANSYS WORKBENCH 16.1软件对五组模型进行分析,得到上颌窦三个区域及种植体的应力分布情况。结果:(1)在垂直向力加载的情况下,各组模型的应力分布情况大致相同,种植体的应力分布主要位于种植体颈部与基台的连接处,上颌窦区骨块的应力分布主要位于与种植体相接触的颈部及上颌窦底的皮质骨。随着C/IR的增大及骨质密度的降低,种植体及皮质骨,松质骨,骨替代品的应力峰值没有明显的改变。(2)在斜向力加载的情况下,各组模型的应力分布情况大致相同,种植体的应力分布位于受力侧种植体颈部与基台的连接之处,上颌窦区骨块的应力分布主要位于受力侧与种植体鳍状螺纹相接触的区域。随着C/IR的增大种植体的最大应力峰值明显升高,皮质骨的应力峰值也有增高。随着松质骨骨密度的降低,皮质骨承担更大的应力。结论:将短种植体联合上颌窦内提升运用于上颌后牙区垂直骨量高度不足的情况是可行的。(1)C/IR的大小在种植体受到斜向力时对种植体及相应骨质区域是有一定的影响的。特别是对种植体基台连接处的应力峰值增大比较明显。(2)当松质骨的密度降低时,对种植体的影响不大,但其松质骨的应力峰值下降,而皮质骨的应力峰值升高,增加了种植体颈部皮质骨吸收的可能性。所以在临床种植修复中,可以将C/IR设计在合理范围内,并对上颌后牙区骨质不佳的患者做到降低牙尖斜度,减小牙冠颊舌径等措施来减少侧向力的影响。但是由于三维有限元分析法的局限性,我们还需进行相应的临床观察及研究。
[Abstract]:Objective: to use three-dimensional finite element method to analyze short implants combined with maxillary sinus liftof maxillary in maxillary sinus. Whether crown to implant ratio of different implants and different cancellous bone mineral density affect the stress of implants and corresponding bone regions, The material and method: 1. Take BICON6x5.7mm implant as the sample, use UG NX8.5 software, A bone mass model of the maxillary sinus region with short implants was developed. The maxillary sinus was divided into three regions: cortical bone region, cancellous bone region and bone substitute area, and the maxillary sinus was divided into three regions: cortical bone region, cancellous bone region and bone substitute area. The bottom end of the implant is 1mm from the bottom of the maxillary sinus, and the C/IR is 1: 1: 1.5: 1: 1: 1: 1: 1: 1: 1: 1: 1. The corresponding cancellous bone mineral density (BMD) is class 2, 3, and 4 groups of 5 models respectively) exerting vertical force and 45 degree oblique force on the 5 groups, respectively. Using ANSYS WORKBENCH 16.1 software to analyze the five groups of models, the stress distribution in three regions of maxillary sinus and implants was obtained. The results showed that the stress distribution of the three regions and implants of maxillary sinus was obtained by using the three-dimensional finite element analysis method. The results showed that the stress distribution of the three regions and implants of the maxillary sinus was obtained by using the software ANSYS WORKBENCH 16.1. The stress distribution of each group of models was approximately the same, and the stress distribution of implant was mainly located at the junction between the implant neck and the abutment. The stress distribution of the bone mass in the maxillary sinus region was mainly located in the cortical bone of the neck and the floor of the maxillary sinus in contact with the implant. With the increase of C/IR and the decrease of the bone density, the implant and cortical bone, cancellous bone, and cancellous bone, There was no significant change in the peak stress of bone substitute. 2) under oblique force loading, the stress distribution of each model was approximately the same, and the stress distribution of implant was located at the connection between the neck of the implant and the abutment. The stress distribution of the bone mass in the maxillary sinus region was mainly located in the area where the stress side was in contact with the fin thread of the implant. The maximum stress peak value of the implant increased with the increase of C/IR. The peak stress of cortical bone also increased. With the decrease of bone mineral density of cancellous bone, Conclusion: it is feasible to apply short implants combined with lifting in maxillary sinus to lower vertical bone mass in maxillary posterior teeth. In particular, the peak stress at the junction of the implant abutment is significantly increased. 2) when the density of cancellous bone decreases, the density of the cancellous bone decreases, and the density of the cancellous bone decreases when the density of the cancellous bone decreases. But the peak stress of cancellous bone decreases, but the peak stress of cortical bone increases, which increases the possibility of cortical bone resorption in implant neck. So in clinical implant repair, C/IR can be designed within a reasonable range. In order to reduce the influence of lateral force on the patients with poor bone in the maxillary posterior region, we should reduce the cusp inclination and the diameter of the crown, buccal tongue, etc. However, due to the limitation of 3D finite element analysis, we need to make corresponding clinical observation and study.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R783.6
【相似文献】
相关期刊论文 前10条
1 任凤娟;邵海宾;;短种植体的临床应用[J];中国口腔种植学杂志;2012年01期
2 蔡展文;於丽明;沈庆平;;短种植体的研究与应用现状[J];口腔材料器械杂志;2012年03期
3 吴茴;林野;邱立新;李健慧;邸萍;;口腔短种植体临床效果五-十年回顾性研究[J];中国口腔种植学杂志;2009年02期
4 薛洪权;周延民;;短种植体的研究进展与应用现状[J];口腔医学研究;2010年05期
5 刘勤;何惠宇;;短种植体临床应用的研究进展[J];口腔医学研究;2012年12期
6 杨文华;;短种植体及其临床应用[J];北京口腔医学;2014年03期
7 董树君;周延民;王林;陈英新;王战鑫;柳淑杰;;上颌窦底短种植体对种植固定桥影响的力学研究[J];中国口腔种植学杂志;2013年02期
8 冯培明;牛光良;;短种植体和超短种植体在后牙区种植3年临床观察[J];口腔颌面修复学杂志;2014年03期
9 黄海云;徐欣;马跃;杨丕山;兰晶;霍丽德;;后牙区短种植体种植的临床观察[J];中国口腔种植学杂志;2008年04期
10 王晗;李德超;朱扬;张琳琳;李鹤佳;;Ⅱ类骨质下上颌窦区垂直骨高度不足时应用短种植体长度和直径的优化分析[J];中国组织工程研究与临床康复;2011年22期
相关会议论文 前2条
1 朴光范;;短种植体的临床应用与体会[A];第六届全国口腔种植学术会议论文汇编[C];2009年
2 吴茴;林野;邱立新;李健慧;邸萍;;口腔短种植体临床效果五-十年回顾性研究[A];第六届全国口腔种植学术会议论文汇编[C];2009年
相关硕士学位论文 前4条
1 哈力代·东木拉提;不同冠根比短种植体在上颌窦区的三维有限元分析[D];山东大学;2016年
2 陈怡如;上颌窦内提升同期植入短种植体的临床应用[D];山东大学;2013年
3 薛洪权;超短种植体(长度≤7mm)不同表面设计对骨界面应力分布的影响[D];延边大学;2010年
4 孙婷;ITI短种植体在后牙区临床病例1~7年回顾性研究[D];遵义医学院;2014年
,本文编号:1646819
本文链接:https://www.wllwen.com/yixuelunwen/kouq/1646819.html