3D打印激光快速成型种植体的制备及其机械性能分析
本文选题:3D打印 + 激光快速成型 ; 参考:《吉林大学》2017年硕士论文
【摘要】:研究背景:牙列缺损或牙列缺失严重影响人民群众身体健康,随着人口老龄化的加速,目前我国无牙颌患者已达1500万,牙列缺损患者已超3亿人。提供舒适安全,恢复咀嚼效率高的义齿修复方式,是迫在眉睫的课题。随着社会经济的发展和科学技术的进步,人们对生活质量要求不断提高,种植义齿修复成为口腔修复的首选。与传统义齿修复方式相比,它具有不破坏口腔余留牙、美观舒适、恢复咀嚼效率高的优点,但仍存在许多不足。目前临床应用的牙种植体多为进口,价格昂贵,加工方式均为精密铸造加工,形态尺寸规格划一,无法满足个性化及特殊患者需求,铸造精度及骨整合效率有待进一步提高,且当前的种植义齿修复多为二次植入,需要患者拔牙后三至六个月行二次手术,不仅在等待拔牙创愈合过程中丧失了宝贵的骨量,而且延长疗程,增加了患者痛苦。因此如何实现个性化即刻种植是种植义齿修复的发展方向。3D打印技术的出现为实现个性化即刻种植提供了可能。它是伴随计算机科学、精密加工技术的进步而出现的快速增材技术,具有精密、快速、个性化、定制化的特点,被认为是推动第三次工业革命的核心技术,一经出现即成为生物医学、航空航天、材料学等众多领域的研究热点。研究目的:应用3D打印激光快速成型技术制备出钛合金牙种植体并探讨其机械性能,为利用3D打印快速成型技术制备个性化牙种植体提供依据。研究方法:在计算机上利用CATIA三维模型设计软件建立牙种植体模型及其X射线衍射实验试件、X射线能谱分析实验试件、显微硬度实验试件、金相显微镜下观察实验试件的模型,并按照国家标准设计出拉伸试件模型,应用3D打印激光快速成型技术和TC4钛合金粉末,设定好打印参数,制备出直径为4.1mm×13mm的圆柱型钛合金种植体,10.0mm×10.0mm×1.0mm的X射线衍射实验试件、X射线能谱分析实验试件、显微硬度实验试件和显微硬度观察试件,及原标距长度55m m,平行长度75mm,宽10mm,厚2mm的拉伸实验试件。通过X射线衍射(XRD)实验分析3D打印钛合金种植牙的材料相组成,通过能量色散X射线光谱(EDS)实验定量分析3D打印钛合金种植牙的材料化学组成并与原粉体相比较与分析,在金相显微镜下观察3D打印钛合金种植体的组织形貌并将退火前和退火后的组织形貌进行比较,利用显微硬度测试仪测试其硬度范围,利用微机控制电子式万能试验机检测材料的机械性能并与国家金属材料拉伸性能标准比较,然后在扫描电镜下观察拉伸断面的形貌。研究结果3D打印TC4钛合金实验试件的XRD实验结果可见XRD曲线中只有第一个峰为β相组成,而且峰较小,其余峰均为α相组成;EDS实验结果显示3D打印钛合金试件中元素含量(质量分数)分别为90.74%Ti、5.59%Al、和3.67%V,与原粉体成分基本一致;3D打印激光快速成型钛合金材料试件金相显微镜下观察到退火前和退火后3D打印钛合金均为典型的网篮状结构,退火后的显微结构则比退火前更加均匀;显微硬度试验结果显示3D打印钛合金材料试件的维氏硬度范围是372.93~428.46HV。拉伸试验结果显示3D打印钛合金材料标准试件的拉伸强度为(1821.7±146.1)MPa,屈服强度为(1355.9±109.6)MPa,延伸率为(31.3±1.7)%,其机械性能符合国家种植牙材料医用标准;扫描电镜下观察3D打印钛合金材料试件断面形貌,可见试件断面密布了大小不一的韧窝,为典型的韧性断裂。结论:利用3D打印快速成型技术和TC4钛合金粉末制备出的材料具有良好的机械性能,能够满足医学牙种植体的材料要求。克服各种细节问题后,该技术有望在牙种植体的制备和个性化即刻种植领域广泛应用。
[Abstract]:Background: dentition defect or dentition deletion seriously affects the health of the people. With the accelerated aging of the population, there are 15 million odonless patients in China and 300 million patients with dentition defects. It is an urgent task to provide comfortable and safe and chewable denture restoration. With the development of social economy and economic development, With the progress of science and technology, people have improved the quality of life, and the implant prosthesis has become the first choice in oral repair. Compared with the traditional denture repair method, it has the advantages of not destroying the mouth remaining teeth, beautiful and comfortable, and restoring the chewing efficiency, but there are still many imfeet. At present, the dental implants are mostly imported and priced at present. Expensive, processing methods are precision casting processing, shape and size specification is one, can not meet the needs of personalized and special patients, casting precision and bone integration efficiency needs to be further improved, and the current implant denture is two implantation, three to six months after the extraction of dental extraction, two operations, not only waiting for tooth extraction wound healing It has lost precious bone mass, extended the course of treatment, and increased the sufferings. Therefore, how to realize individualized immediate planting is the development direction of denture restoration, the emergence of.3D printing technology provides the possibility to realize individualized immediate planting. It is a rapid increasing technique with the progress of computer science and fine processing technology. Operation, with the characteristics of precision, speed, individuation and customization, is considered as the core technology to promote the third industrial revolution. Once it appears, it becomes a hot spot in many fields, such as biomedicine, aeronautics and Astronautics, materials science and so on. The purpose of this study is to prepare titanium alloy dental implants by 3D printing laser rapid forming technology and explore its mechanical properties. It provides a basis for the preparation of individual dental implants by using 3D printing rapid prototyping technology. On the computer, CATIA 3D model design software is used to establish dental implants model and X ray diffraction test specimen, X ray energy spectrum analysis test specimen, microhardness test specimen, and metallographic microscope to observe the model of experimental specimen The tensile specimen model was designed according to the national standard. The laser rapid prototyping technology and TC4 titanium alloy powder were printed by 3D, and the printing parameters were set. The cylindrical titanium alloy implants with a diameter of 4.1mm x 13mm were prepared, the X ray diffraction experimental specimens of 10.0mm * 10.0mm x 1.0mm, the X ray energy spectrum analysis test specimen, and the microhardness test test were tested. The specimen and the microhardness test specimen, the tensile experimental specimen with the length of 55m m, the parallel length 75mm, the wide 10mm, and the thick 2mm are tested by the X ray diffraction (XRD) experiment to analyze the material phase composition of the implanted teeth of the 3D printing titanium alloy. The chemical composition of the material of the 3D printing titanium alloy implant teeth is quantitatively analyzed by the energy dispersive X ray spectroscopy (EDS) and the raw materials are analyzed by the energy dispersive X ray spectroscopy (EDS). The microstructure of 3D titanium alloy implants was observed under metallographic microscope and compared with the microstructure before and after annealing. The hardness range was measured by the microhardness tester, and the mechanical properties of the material were detected by the microcomputer controlled electronic universal testing machine and the tensile property of the metal material. It can be compared, and then the morphology of the tensile section is observed under the scanning electron microscope. The results of XRD experiment of 3D print TC4 titanium alloy experimental specimen show that only the first peak in the XRD curve is composed of beta phase, and the peak is small, and the other peaks are all alpha phase composition; the result of EDS experiment shows the element content (mass fraction) in the 3D printing titanium alloy specimen. 90.74%Ti, 5.59%Al, and 3.67%V are basically the same as the original powder, and the 3D printing laser rapid prototyping titanium alloy specimens are observed under the metallographic microscope that the 3D printing titanium alloy is a typical net basket structure before and after the annealing, and the microstructure after annealing is more uniform than that before the annealing; the microhardness test results show 3D beating. The Vivtorinox hardness range of the test piece of imprinted titanium alloy material is 372.93~428.46HV. tensile test results show that the tensile strength of the standard specimen of 3D printing titanium alloy material is (1821.7 + 146.1) MPa, the yield strength is (1355.9 + 109.6) MPa, and the elongation is (31.3 + 1.7)%. The mechanical properties conform to the medical standard of the national dental implant material; the scanning electron microscope is used to observe the 3D The cross section of the specimen of titanium alloy material is printed, and the fracture surface of the specimen is shown to be a typical ductile fracture. Conclusion: the materials prepared by 3D printing rapid prototyping and TC4 titanium alloy powder have good mechanical properties, and can meet the material requirements of medical dental implants. The technology is expected to be widely applied in the field of dental implants preparation and personalized instant planting.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R783.6
【参考文献】
相关期刊论文 前10条
1 董智伟;张新凤;陈春艳;曹志强;柳云恩;侯明晓;张力;;3D打印导板技术在单侧颧骨骨折治疗中的应用[J];解放军医药杂志;2016年11期
2 王洪一;梁久龙;刘晓燕;张庭辉;邱涛;付志强;何景涛;曹志强;柳云恩;陶凯;侯明晓;;3D打印技术在正颌外科手术中的应用[J];解放军医药杂志;2015年11期
3 汤雨龙;惠瑞宗;曹志强;柳云恩;张晓东;侯明晓;;3D打印技术在口腔种植导板制作中的应用[J];解放军医药杂志;2015年11期
4 张云波;乔雯钰;张鑫鑫;马芳;翟莲娜;顾哲明;;3D打印用高分子材料的研究与应用进展[J];上海塑料;2015年01期
5 沈聪聪;张艳;李青峰;朱明;侯亦康;曲淼;许yP荣;柴岗;;3-D打印技术制备人工骨修复下颌角截骨整形术后骨缺损[J];中国修复重建外科杂志;2014年03期
6 石静;钟玉敏;;组织工程中3D生物打印技术的应用[J];中国组织工程研究;2014年02期
7 杨永强;刘洋;宋长辉;;金属零件3D打印技术现状及研究进展[J];机电工程技术;2013年04期
8 ;解密3D打印[J];工业设计;2013年02期
9 罗刚银;唐玉国;乔培玉;王弼陡;贾赞东;徐重;;结构光数字栅线法对物体三维形貌的高精度测量[J];光谱学与光谱分析;2012年09期
10 郑卫国,颜永年,周赫赫,刘振宁;快速成形技术在临床外科手术中的潜在应用[J];清华大学学报(自然科学版);2002年08期
相关硕士学位论文 前2条
1 杨中;基于羟基磷灰石的3D打印和烧结强化人工骨技术研究[D];重庆大学;2015年
2 张钰;聚醚醚酮仿生人工骨3D打印热力学仿真及实验研究[D];吉林大学;2014年
,本文编号:1870378
本文链接:https://www.wllwen.com/yixuelunwen/kouq/1870378.html