不同咬合接触面积对种植体周围骨组织应力分布的影响
发布时间:2018-06-03 09:25
本文选题:种植体 + 三维有限元 ; 参考:《山西医科大学》2014年硕士论文
【摘要】:目的: 应用三维有限元方法,研究在不同牙槽骨骨质情况下,后牙单个种植修复体咬合接触面积与种植体直径范围不同比例关系时,对种植体及其周围骨组织应力分布的影响,为临床应用中不同牙槽骨骨质条件患者提供合理的种植体上部结构设计方案及调牙合提供理论基础。 方法: 运用CBCT扫描技术获得6┐缺失患者上下颌牙列及上下颌骨连续水平的二维断层图像。在Mimics10.01软件中将获得的二维图像重建为三维图像,剪切获得6┐颌骨骨块模型,在Solid work2012软件中依据咬合曲线、6┐牙冠标准值数据及工作数据建立牙冠模型,,按照德国XIVE种植体厂商提供的种植体参数建立种植体模型。在Solid work2012软件中将下颌骨骨块、种植体、牙冠组合装配后完成模型。按照咬合接触面积分别超出种植体直径范围0%、10%、20%、30%、40%分组后,在Solid works软件中对种植修复体牙合面加载负荷,计算并分析种植修复体咬合接触面积与种植体直径范围不同比例时对种植体周围骨组织应力分布情况。 结果: 1.在Mimics10.01软件中建立了头面部模型,剪切获得6┐颌骨骨块模型;Solid works2012软件中制作6┐牙冠标准值模型及实验中的工作模型,以及种植体模型,修整模型,使其具有优良的力学及结构相似性,为下一步的实验研究奠定基础。 2.在相同的骨质、相同的受力条件下,种植体及周围骨组织应力分布情况走向大致相同:应力分布基本集中于种植体颈部周围的骨皮质中,而分布于松质骨中的应力相应减少。 3.在相同的受力条件下,随着下颌骨骨质密度的变化,种植体及周围骨组织应力峰值分布趋势:Ⅰ类骨质、Ⅱ类骨质<Ⅲ类骨质<Ⅳ类骨质。 4.在相同的骨质中,不同的受力方式下,种植体及周围骨组织应力分布情况基本一致:斜向集中>斜向均布>垂直集中>垂直均布。 5.在相同骨质密度、相同的受力条件下,种植体及周围骨组织应力峰值分布:咬合接触面积超出种植体直径范围0%、20%<10%<30%<40%,但咬合面积超出30%以内时,两两比较其应力分布值差别无统计学意义,而超出种植体直径范围40%以后,种植体周围应力值显著增加,且差别具有统计学意义。 结论: 相同骨质及受力条件下,咬合接触面积大小决定种植体及周围骨组织应力分布,因此,适当的咬合接触面积是种植体修复中必须重视的。将种植修复体牙合面接触范围扩大到种植体直径范围的130%以内时,种植体及周围骨组织应力分布无统计学差别,可以为临床研究提供理论基础。
[Abstract]:Objective: The effects of occlusal contact area and implant diameter range on stress distribution of implant and its surrounding bone were studied with three-dimensional finite element method (FEM) under different alveolar bone condition and the relationship between occlusal contact area and implant diameter range. It provides a theoretical basis for the reasonable design of implant superstructure and the adjustment of occlusal in patients with different alveolar bone condition in clinical application. Methods: CBCT scan technique was used to obtain 2D images of maxillary dentition and mandibular bone in patients with 6 missing teeth. The 2D image was reconstructed into three dimensional image in Mimics10.01 software, and the 6 jaw bone block model was obtained by cutting. The crown model was established in Solid work2012 software based on the standard value data and working data of the occlusal curve. The implant model was established according to the implant parameters provided by XIVE implant manufacturer in Germany. The mandibular bone block, implant and crown were assembled in Solid work2012 software to complete the model. According to the occlusal contact area, which exceeded the implant diameter respectively, the implant was loaded with a load on the dental surface of the implant in the Solid works software after 40% grouping. The stress distribution of the bone tissue around the implant was calculated and analyzed when the occlusal contact area and the implant diameter range were different. Results: 1. The craniofacial model was established in Mimics10.01 software, and the 6 mandibular bone mass model was obtained. In the solid works2012 software, the standard value model of 6 crowns, the working model in experiment, the implant model and the dressing model were made. It has excellent mechanical and structural similarity, and lays a foundation for further experimental research. 2. Under the same bone and same stress conditions, the stress distribution of implants and surrounding bone tissues is approximately the same: the stress distribution is basically concentrated in the cortex around the implant neck, while the stress distributed in the cancellous bone decreases accordingly. 3. Under the same stress condition, with the change of bone density of mandible, the distribution trend of stress peak in implant and surrounding bone tissue was: class 鈪
本文编号:1972282
本文链接:https://www.wllwen.com/yixuelunwen/kouq/1972282.html
最近更新
教材专著