平台转移种植体骨界面应力分布三维有限元分析
发布时间:2018-07-07 18:47
本文选题:三维有限元分析 + 平台转移 ; 参考:《河北医科大学》2017年硕士论文
【摘要】:目的:口腔种植技术是目前临床上针对牙齿缺失患者的较为理想的修复技术。一个让人满意的种植修复体应该具有良好的生物相容性和相应的力学相容性,可以和人体牙槽骨组织直接接触形成骨结合,国内外对种植体的研究主要集中在骨结合界面、种植体生物力学方面和种植体材料及表面工艺等方面,而平台转移种植体是近年来临床上新发展的一种种植体设计,因其良好的稳定性目前已成为临床研究的一大方向,而针对其种植体的应力分布基础研究少有报道,三维有限元分析是研究人工牙种植体应力分布最为常用的分析方法,本实验应用ANSYS有限元分析软件,对平台转移种植体及非平台设计种植体骨界面进行应力分布对比分析,通过比较两种不同表面形态种植体骨界面应力分布及应力峰值,探讨平台转移种植体及非平台设计种植体对骨界面应力分布的影响,为种植体的临床设计与选择提供参考。方法:依据成人下颌骨CT扫描结果,在ANSYS中建立下颌骨三维模型。设计平台转移种植体模型以及对照组非平台转移两种种植体模型,建立下颌骨—种植体的几何模型,将模型以sat格式导入Ansys Workbench中,在Ansys Workbench中可以显示模型的整体和各个部分。材料力学参数模型中所有材料均采用各向同性的线弹性假设,将下颌骨两侧髁突顶端所有节点自由度予以刚性约束,以阻止下颌骨的位移,模型中界面两种材料在载荷下不发生相对滑动。在种植体上表面分别施加以下两种载荷工况的均布载荷以模拟种植体真实受力情况:(1)垂直于种植体上表面(由牙合面垂直向下)的100N均布载荷。(2)与种植体轴线成30°夹角向下,由唇颊侧指向舌侧的100N倾斜均布载荷。应用大型有限元分析软件ANSYS 10.0将加载条件的参数输入计算机,通过ANSYS10.0软件对各组模型进行计算,得出模型加载后的的三维应力图像以及各节点应力值,从而对结果进行分析,观察在垂直加载和倾斜加载时应力分布及应力集中情况。结果:1垂直加载种植体应力峰值结果平台转移种植体:最大应力值:28.780 Mpa;最小值:0.873 Mpa;差值27.907 Mpa。非平台转移种植体:最大应力值:44.804 Mpa;最小值:0.885 Mpa;差值43.919 Mpa。两者差值百分比63.54%(Fig.11)。2倾斜加载种植体应力峰值结果平台转移种植体:最大应力值:105.63Mpa;最小值1.000 Mpa;差值104.630Mpa。非平台转移种植体:最大应力值:113.570Mpa;最小值:0.391 Mpa;差值113.179Mpa。两者差值百分比92.45%(Fig.12)。根据倾斜载荷条件的加载方向,舌侧为受压区,颊侧为受拉区。从倾斜载荷下的侧向等效应力云图对比中可以看出(Fig.17,18),两个种植体在倾斜载荷条件下的等效应力水平均出现在皮质骨上缘,且为舌侧大于颊侧。这说明在倾斜载荷条件下,应力主要集中在皮质骨上缘。可以将倾斜载荷分解为水平方向的载荷和竖直方向的载荷,从而分析出在竖直载荷条件下,皮质骨上缘部位的整体应力是受压的。非平台转移种植体较平台转移种植体在转移平台处也就是牙颈部承受了更大的压力。3加载后应力云图应力分布结果由应力云图分布结果可以看到,非平台转移种植体在垂直载荷和倾斜载荷条件下的最大等效应力比平台转移种植体大。非平台转移种植体相较平台转移种植体在倾斜载荷下的纵切等效应力云图颈部承受了更大应力,而平台转移种植体则在颈部承受应力相对较小。而就应力值来说可以看到,平台转移种植体较非平台转移种植体应力更小外,提示颈部更是应力集中的区域。由对比中可以看到,非平台转移种植体较平台转移植体皆存在较大差别的应力,而此应力在种植体颈部倾斜加载下应力差别最大,而平台转移种植并未改变种植体应力集中区域。结论:1在不同载荷情况下,平台转移种植体应力峰值较非平台转移种植体应力峰值更小,应力分布更均匀,对骨结合的形成和骨结合的位置更有利。2平台转移种植并未改变种植体应力集中区域,其种植体的应力集中区域仍在植体颈部,但其减小了种植体应力峰值。
[Abstract]:Objective: oral implant technology is an ideal repair technique for patients with tooth loss at present. A satisfactory implant should have good biocompatibility and corresponding mechanical compatibility and direct contact with the bone tissue of the human body to form a bone union. The research on the implant is mainly concentrated at home and abroad. In the aspects of bone binding interface, implant biomechanics, implant material and surface technology, platform transfer implant is a new implant design in recent years. Because of its good stability, it has become a major trend in clinical research, and few reports have been reported on the stress distribution of the implant. Three The dimensional finite element analysis is the most common analysis method to study the stress distribution of artificial tooth implant. In this experiment, the stress distribution of the implant bone interface of the platform transfer implants and the non platform design is compared and analyzed by the ANSYS finite element analysis software. The stress distribution and the stress peak of two different surface forms of implant bone interface are compared. To explore the effect of platform transfer implants and non platform implants on the stress distribution of bone interface in order to provide reference for clinical design and selection of implant. Methods: the three-dimensional model of mandible was established in ANSYS based on CT scanning results of adult mandible. Two kinds of implants were designed by platform transfer implants and non platform transfer of control group. The geometric model of the mandible implant is established. The model is introduced into the Ansys Workbench by sat format, and the whole and all parts of the model can be displayed in the Ansys Workbench. All materials in the material mechanical parameter model use isotropic linear elastic hypothesis to give the stiffness of all nodes at the top of the mandible on the top of the mandible. In order to prevent the displacement of the mandible, the two materials in the model are not relatively sliding under the load. On the surface of the implant, the average load of the following two load conditions is applied to simulate the true stress of the implant. (1) the 100N load perpendicular to the surface of the implant (perpendicular to the tooth surface). (2) and the implant The angle of the axis is 30 degrees down, and the 100N of the lip and cheek points to the tongue side. The parameters of the loading condition are input to the computer by the large finite element analysis software ANSYS 10, and the models are calculated by the ANSYS10.0 software, and the three-dimensional stress images and the stress values of each node are obtained, thus the results are carried out. Analysis, the stress distribution and stress concentration of vertical loading and tilting loading were observed. Results: 1 vertical implant stress peak stress peak result platform transfer implants: maximum stress value: 28.780 Mpa; minimum value: 0.873 Mpa; difference value 27.907 Mpa. non platform transfer implants: maximum stress value: 44.804 Mpa; minimum value: 0.885 Mpa; difference value 43.919 M Pa. difference percentage 63.54% (Fig.11).2 tilted implant stress peak stress results platform transfer implants: maximum stress value: 105.63Mpa; minimum value of 1 Mpa; differential 104.630Mpa. non platform transfer implants: maximum stress value: 113.570Mpa; minimum value: 0.391 Mpa; difference value difference percentage 92.45% (Fig.12). According to the deviation of the value of 92.45% (Fig.12). The loading direction of the oblique load condition, the side of the tongue as the compression zone, the cheek side as the tension zone, can be seen in the contrast of the lateral equivalent stress cloud map under the inclined load (Fig.17,18). The equivalent stress level of the two implants under the inclined load conditions all appear on the upper edge of the cortical bone, and the tongue side is greater than the buccal side. This indicates that under the condition of the tilt load, it is necessary. The force is mainly concentrated on the upper edge of the cortical bone. The load of the load and the vertical direction can be decomposed into the horizontal direction. The stress of the upper edge of the cortical bone is analyzed under the vertical load condition. The non platform transfer implants are larger than the platform transfer implants at the transfer platform, that is, the tooth neck is greater. The stress nephogram stress distribution results can be seen from the distribution of stress cloud map after loading of pressure.3. The maximum equivalent stress of non platform transfer implants under vertical and tilt load conditions is larger than that of platform transfer implants. The non platform transfer implants are compared with the equivalent stress cloud chart of the platform transfer implants under the inclined load. The neck bears greater stress, while the platform transfer implant is less stressed in the neck, and the stress value can be seen that the platform transfer implants are less stressed than the non platform transfer implants, suggesting that the neck is more concentrated in the stress area. By contrast, the non platform transfer implants are compared to the platform transfer implant. There is a large difference in stress, and the stress has the greatest stress difference under the tilted load of the implant neck, and the platform transfer planting does not change the stress concentration area of the implant. Conclusion: 1 under different loads, the peak stress peak of the platform transfer implants is smaller than that of the non platform transfer implants, and the stress distribution is more uniform and the bone node is more uniform. The position of the combined formation and bone binding is more favorable for the.2 platform transfer planting and does not change the stress concentration area of the implant. The stress concentration area of the implant is still in the neck of the implant, but it reduces the peak stress of the implant.
【学位授予单位】:河北医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R783.6
【参考文献】
相关期刊论文 前9条
1 朱一博;邱立新;李健慧;林野;;平台转换种植修复基台折断六例原因分析[J];中华口腔医学杂志;2015年09期
2 栗兴超;董福生;;种植体表面螺纹形态对其生物力学性能影响的研究进展[J];现代口腔医学杂志;2014年05期
3 张潇;谢占功;陈贤帅;陈建宇;;螺纹形态和螺距对种植体系统应力影响的三维有限元研究[J];广东牙病防治;2012年12期
4 赵静辉;周延民;李春艳;;种植体螺纹位置对应力分布影响的有限元研究[J];华西口腔医学杂志;2008年06期
5 马攀;刘洪臣;李德华;林升;史真;彭勤建;;螺纹旋转角度和密度对种植体初期稳定性影响的三维有限元研究[J];中华口腔医学杂志;2007年10期
6 孔亮;刘宝林;胡开进;李德华;宋应亮;马攀;杨劲;;螺纹种植体螺距的优化设计和应力分析[J];华西口腔医学杂志;2006年06期
7 孔亮;刘宝林;李德华;宋应亮;胡开进;马攀;宋俐;杨水成;魏锋涛;;不同螺纹形态种植体对颌骨应力影响的三维有限元比较研究[J];口腔医学研究;2006年02期
8 汪昆;李德华;周继祥;杨军;史文进;张从纪;李玉龙;;螺纹形态对牙种植体初期稳定性影响的有限元研究[J];第三军医大学学报;2005年23期
9 董福生,董玉英,邢汝东,石培凯,张英怀,张雄;种植体长度对骨界面应力分布影响的三维有限元分析[J];中国口腔种植学杂志;2001年03期
,本文编号:2105907
本文链接:https://www.wllwen.com/yixuelunwen/kouq/2105907.html
最近更新
教材专著