微种植体支抗远移下颌磨牙的生物力学研究
[Abstract]:Aim: to analyze the displacement and stress distribution of microimplants and teeth in the treatment of distal mandibular molars by means of finite element method. Methods: spiral CT was used to scan the craniomaxillary region of the subjects with intact dentition, normal tooth shape and size. Four groups of 3-D finite element models were established with Mimics,Ansys Workbench software. A 3-D finite element model of a bracket, arch wire, in which the nickel titanium push spring is placed on one side of the first, bicuspid. 2: in 1, the first and second molars are implanted with microimplants between the roots, The microimplants were tightly ligated with the first molar. 3: the microimplants were tightly ligated with the second premolars, the rest were the same as 2.4: the bilateral mandibular oblique was parallel to the root of the second molar. A nickel titanium pull spring was inserted between the microimplant and the traction hook (mandibular lateral incisor and canine teeth). For 1 and 2, 150 g of push spring was applied to push the second molar of mandible, 3 to 250 g of push spring, the first and second molar of mandible to move far, and 4 to apply force of 300 g to the whole mandibular dentition. In the simulation group, the second molar and the microimplant support were applied to the distal mandibular second molar, all mandibular molars and the whole lower dentition, respectively, and the corresponding force values were loaded and calculated for the four groups of models. Results: in model 2, the first molar tilted more than 1, mainly around the microimplant, while the second molar was tilted in the distal direction with the torsion of the tongue, and the initial displacement of the remaining teeth was smaller than that of model 1. All molars in model 3 were distal tilted, while the first molars in model 4 were distally shifted and the second molars were tilted in the distal direction less than that in model 3. Conclusion: indirect implant Anchorage can enhance the Anchorage effect, but direct Anchorage can effectively avoid the labial inclination of anterior teeth, and the distal movement of group teeth is more favorable to the whole movement of molars than to the distant movement of each tooth.
【作者单位】: 安徽医科大学;空军总医院口腔科;
【分类号】:R783.5
【参考文献】
中国期刊全文数据库 前3条
1 高柠,秦葵庆,,姜同学,陈爽,王道富;镍钛丝弹簧在口腔正畸临床的应用[J];医用生物力学;1995年02期
2 吴丽萍,李洪,刘磊,梁傥;上颌尖牙远中移动的矫治力分析[J];中华口腔医学杂志;1995年06期
3 左凯;柯杰;赵桂芝;武倩倩;许诺;贾成亮;范星星;;滑动法关闭下颌第一磨牙拔牙间隙三维有限元模型的建立及验证[J];牙体牙髓牙周病学杂志;2013年05期
【共引文献】
中国期刊全文数据库 前10条
1 杨东红;叶之慧;王石;付爽;吴立鹏;;正畸牙移动过程中血小板源性生长因子-BB在牙周组织中的表达[J];广东牙病防治;2014年02期
2 Jie Yao;Guan-Ming Kuang;Duo Wai-Chi Wong;Wen-Xin Niu;Ming Zhang;Yu-Bo Fan;;Influence of screw length and diameter on tibial strain energy density distribution after anterior cruciate ligament reconstruction[J];Acta Mechanica Sinica;2014年02期
3 李志华,陈扬熙,刘剑,吴建勇,朱玉芬;上颌第一磨牙远中移动时牙周应力分布的三维有限元分析[J];华西口腔医学杂志;2003年04期
4 吴丽萍,胡敏,林曦,关丽媛,刘磊,李洪;正畸过程中支抗牙承载能力的光弹性研究[J];吉林医学;1997年03期
5 李志华;有限元法在牙齿及其支持组织应力分布研究中的应用[J];实用临床医学;2001年02期
6 莫水学,李志华,叶平,刘剑;上颌第一磨牙牙槽骨应力分布的有限元分析[J];实用临床医学;2003年02期
7 杨东红;冯卉姗;赵刚;侯玉泽;李晓光;叶之慧;;不同牙周组织状态下正畸牙移动对牙槽骨影响的实验研究[J];黑龙江医药科学;2013年06期
8 陈磊;徐建光;谢琳;张君;;摇椅形唇弓打开咬合前后上颌牙的三维变化[J];上海口腔医学;2009年02期
9 钱英莉,樊瑜波,蒋文涛;正畸力作用下牙齿移动的生物力学[J];医用生物力学;2003年03期
10 张磊;樊瑜波;;转矩作用对微植体矫治力系内收上前牙影响的三维有限元研究[J];医用生物力学;2007年02期
中国硕士学位论文全文数据库 前10条
1 景潞华;不同植入角度及不同加载力角度对微植体稳定性影响的研究[D];山西医科大学;2010年
2 郭萍;利用微种植钉支抗滑动法近中移动下颌第二磨牙关闭第一磨牙缺失间隙的疗效分析[D];浙江大学;2011年
3 李志华;上颌第一磨牙远中移动时牙周应力分布的三维有限元分析[D];江西医学院;2000年
4 白晓亮;下颌第一恒磨牙舌侧矫治的生物力学分析[D];中国医科大学;2005年
5 周倩;上中切牙牙周支持组织高度降低的三维有限元研究[D];中国医科大学;2005年
6 高文华;上颌骨和牙齿在颌间牵引力作用下受力的三维有限元分析[D];山西医科大学;2006年
7 王颖;下颌牙列精确三维有限元模型建模及正畸过程分析[D];哈尔滨工业大学;2007年
8 黄纯;不同角度磨牙后倾曲近中移动下颌第二磨牙的有限元分析[D];暨南大学;2009年
9 金福;镍钛拉簧和弹力链力值衰减的体外实验研究[D];南昌大学;2009年
10 张清华;不同牙槽骨高度的上颌尖牙生物力学效应分析[D];山西医科大学;2010年
【二级参考文献】
中国期刊全文数据库 前7条
1 周书敏,何明元,张延宏,杨成寿,阚常珍;牙根尖区应力分布的三维有限元计算[J];北京医科大学学报;1988年01期
2 米方林;周燕玲;黄志澎;张杨;;支抗力作用下上颌第一磨牙牙周膜应力的三维有限元分析[J];国际口腔医学杂志;2008年01期
3 王海燕,邵s
本文编号:2230907
本文链接:https://www.wllwen.com/yixuelunwen/kouq/2230907.html